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INTRODUCTION

Let C nxn be the space of nxn complex matrices. For a matrix
Aell ., A,A", A", A"and Adenote conjugate,

transpose, conjugate transpose, inverse and Moore-Penrose
inverse of a matrix ‘A’ respectively. Let ‘k’ be a fixed product
of disjoint transpositions in S, = {1, 2... n} (hence,
involutory) and let ‘K’ be the associated permutation matrix.
The concept of Con-k-normal matrices is introduced ?12 a
generalization of k-real and k-hermitian and normal matrices
[2]. The con-k-unitary is also discussed in this paper. Cldaily

‘K’ satisfies the following properties: K° = I(pind
K=K"=K"=K' : (iv)

Basic Definitions

V)
Definition 2.1[3]: A matrix 4 €[] | is said to be k—norl&aﬂ,
it AA'K =K A" A. (vii)

Thatis, @, @, (i1 k@) =D r() nokiyn @5 LI=1,2..n.

is said to be k-

Xn

Definition 2.2[3]: A matrix 4 €[]
unitary, if A AK=KA'A=K.
Con-k-normal matrices
Definition 3.1: A matrix 4 €[] |

normal, if AA'K =K A" A.
Thatis, AA"K =KA" A (or) KA A= AA"K

is said to be con-k-

Xn
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i
Example3.2: Let 4 = |:l . :| is con-k-normal for k= (1, 2),
1

0 1
where K =
1 0

Theorem 3.3: For A €], the following conditions are
equivalent.
4 is con-k-normal.

A is con-k-normal.
A" is con-k-normal.
A is con-k-normal.
A" is con-k-normal, if A" exist.

7.
A" is con-k-normal.
AA is con-k-normal,where A is a real number.

Proof: (i) < (ii): 4 is con-k-normal
< AAK=KAA4

& (AA4'K) = (KA"4)
o AA'K=KAA
< A is con-k-normal.
(i) < (iii): A4 is con-k-normal
S ALK =KA" A < (AAK) =(KA"4)"
SK' (A A =A"(A"Y K" & KAA" =A"AK
Pre and post multiply by K on both sides,
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SAA" K=K A4 < A" is con-k-normal.

(i) <> (iv): A is conk-normal < AA K=K A" A

S (AAK) =(KA" 4y

S K'(AYA=(4) (4K o KAAL =4 4K
Pre and post multiply by K on both sides,

& AALK=KA"A < A" is con-k-normal.

(i) < (v): A is con-k-normal <> AAK=K A" A4

S (AA4K) ' ' =(KA4)"

K'Y A =(4) )K"

S KAy A =(4) 4 K

< A is con-k-normal, if A" exist.

(i) <> (vi): A4 is con-k-normal <> AA'K =K A" A
S (44K ) =(KA 1)

o K ANY 4" = m(AT)TK <> A" is con-k-normal.
(i) <> (vii): A is k-normal<> AA'K =K A" A

S A(AALK)=1(KA"A)

S (AA)(AAVK=K(AA")(AA)

S (AA)V(AA)Y K=K(AA) (1A)

<> (AA) is con-k-normal.

Theorem 3.4: .If A and B are con-k-normal matrices. Then
(A+B) and (A-B) are con-k-normal matrix.

Proof: Given A and B are con-k-normal. Then

AAK =K A" A <o (1

and BB'K =K B"B e )

Adding equations (1) and (2), we get,
AAK+BBK=KA"A+KB'B

Pre and post multiply by (AB" +A"B)K and

K(AT B +BTZ) we get,

(AB'+AB)K+(AA +BBYK =K(A" A+B"B)+K(A" B+B" A)
= [A(A" +B)+B(A +B)]K=K[(A+B) A" +(A+B)B"]
= (A+B)(4 +B)YK=K (A" +B")(4+B)

= (A+B)(A+B) K=K (A+B)" (A+B)
Therefore (A + B) is con-k-normal.

Similarly, we can prove (A — B) is con-k-normal.

Theorem 3.5: Let A€ (]

(). If A is con-k-normal, then (iA) is con-k-normal.
(ii). If A is con-k-normal, then (-iA) is con-k-normal.
Proof: (i) Given A is con-k-normal.

nxn

Thatis, AA'K =KA"A = i*(AA°K)=i*(KA" A)
= (AD[-A)][ ]K =K(i4) [-(id)]
= (id)(id)'K = K(id)" (i4)

= (iA) is con-k-normal.
Similarly, we can prove (-iA) is con-k-normal.

Theorem 3.6: Let A€l be con-k-normal, then A4 and

AA are k-normal.
Proof: Let A be con-k-normal, if A A*K = KA" 4 .

We have, (A4)(AA)'K =(4A) (A" 4K = A(AA)HA'K

= A(K*AA"A'K

=AAADAK =(AA YK ............ 3)

and K(4A4)" (A44) = K(A" A4")(A4) = (KA" A)(4’ 4)
= (AA'K)(A" A)

= (AA)AAHNK =(AA VK ... (4)

From (3) and (4), we have, (A4)(AA4) K = K(4A4)" (44)
Therefore, AA is k-normal.
Similarly, we can prove AA is k-normal.

Remark 3.7: The reverse implication A4 and AA are k-
normal, then A is con-k-normal is false.

Theorem 3.8[1]: Let 4, B[] _ be con-k-normal matrices,

then AB=BA = A"B=BA".

In words, if A is con-commutes with some matrix B, then A"
con-commutes with B as well.
Proof: Given A and B are con-k-normal matrices, then

AAK=K A" Aand BB'K =K B"B Since AB = BA
is trivially true for B=A. Let A be con-k-normal and let B be
con-commute with A. 4B = BA

. {0 A} A {0 B}

For, A=| _ and B=| _ . We have
A 0 B 0

AB=AB® AB and BA=BA®BA.

— A and B commutes.

Since A is con-k-normal, then A" is con-k-normal.

= 1:1 is con-k-normal, then = ,21* is con-k-normal.

Therefore, A°B = BA" which is equivalent to

A"B=B4".

Con-k-unitary matrices

is said to be con-k-

xXn

unitary, if A AK=KA"A=K .

Definition 4.1: A matrix 4 €l] |
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Example 4.2: Let 4 = is con-k-unitary for

Sl- 5
= sl 5

0 1
1 0

Theorem 4.3: For A €] the following conditions are

k=(1,2) , where K =

1

equivalent.

(1) A4 is con-k-unitary.

(ii) A is con-k- unitary.

(ii1) A is con-k- unitary.

(iv) A" s con-k- unitary.

v) A" is con-k- unitary, if 4" exist.

(vi) A is con-k- unitary.

(vii) AA is con-k- unitary, where A is a real number.

Theorem 4.4: Let A,B €l | .If A and B are con-k-

unitary matrices, then AB is con-k-normal.
Proof: Let A and B are con-k-unitary, then

AAK=KA A=K and BB'K=KB'B=K.
To prove AB is con-k-normal.
Now, (AB)(AB)'K = AB(B"A)K = ABB)A'K = ALK =K

From (5) and (6), we have

(A4B)(AB)' K = K (AB)" (4B).

Therefore AB is con-k-normal.

Corollary 4.5: Let A,B €[] | .If A and B are con-k-
unitary matrices, then AB is con-k-unitary.
Theorem 4.6: Let A,B €[l | .If A and B are con-k-

unitary matrices, then BA is
Proof: Let A and B are con-k-unitary, then

AAK=KA A=K ............ (7)
and BBPK=KB'B=K ........... (8)
From (7) and (8), we have
AA'K BBK=KA"AKB'B=K*=1
= KBBK=KA"AK =1
= BB =A"A=1

con-unitary.

= BK*B ' =A"K’A=1
= BAAKKB = A"KKB"BA=1
=  (BA)BA) =(BA) (BA)=1
Therefore, BA is con-unitary.
Theorem 4.7: Let A€[], and A=SU, A" =SV , where

U and V are con-k-unitary matrices and S is a symmetric
matrix, then A is con-k-normal.

Proof: Let A= SU and A" = SV, where U and V are con-k-

n

unitary.
Then,
AA'K =(SU)SU)'K = SUU'SK = SUU'K*SK = SSK
.............. 9)
KA A=KA A=K(SVXV'S)=SKWW'S =SV'VKS =SV /SK =SSK
............. (10)

From (9) and (10), we have A4'K = KA*A=KA" 4.

Therefore, A is con-k-normal.
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