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INTRODUCTION 
Let  Ҫ nxn  be the space of nxn complex matrices. For a matrix

n nA � , , ,TA A 1,A A 
and 

†A denote conjugate, 

transpose, conjugate transpose, inverse and Moore
inverse of a matrix ‘A’ respectively. Let ‘k’ be a fixed product 
of disjoint transpositions in Sn = {1, 2… n} (hence, 
involutory) and let ‘K’ be the associated permutation matrix. 
The concept of Con-k-normal matrices is introduced as a 
generalization of k-real and k-hermitian and normal matrices 
[2]. The con-k-unitary is also discussed in this paper. Clearly 

‘K’ satisfies the following properties: 
†TK K K K                                             

Basic Definitions 
 

Definition 2.1[3]: A matrix n nA �  is said to be k

if .A A K K A A 
 

That is, ( ) 1 ( ) ( ) ( ) 1i j n k j k i k j n k i i ja a a a   

Definition 2.2[3]:  A matrix n nA �  is said to be k

unitary, if A A K K A A K   . 
 

Con-k-normal matrices 
 

Definition 3.1: A matrix n nA �  is said to be con

normal, if .A A K K A A 
 

That is, 
TA A K KA A    (or) KA A AA K 
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ABSTRACT 

The concept of conjugate k-normal (con-k-normal) matrices is introduced. Some basic results of 
con-k-normal, con-k-unitary are discussed.  
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be the space of nxn complex matrices. For a matrix
†A denote conjugate, 

transpose, conjugate transpose, inverse and Moore-Penrose 
of a matrix ‘A’ respectively. Let ‘k’ be a fixed product 

= {1, 2… n} (hence, 
involutory) and let ‘K’ be the associated permutation matrix. 

normal matrices is introduced as a 
hermitian and normal matrices 

unitary is also discussed in this paper. Clearly 

‘K’ satisfies the following properties: 
2K I and 

                                          . 

is said to be k-normal, 

i j n k j k i k j n k i i ja a a a ;    i, j = 1, 2… n. 

is said to be k-

is said to be con-k-

TKA A AA K  
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Example3.2: Let
0

1

i
A

i

 
  
 

where 
0 1

1 0
K

 
  
 

  

Theorem 3.3: For n nA �  

equivalent. 

(i)  A  is con-k-normal.    

(ii) A  is con-k-normal. 

(iii) 
TA is con-k-normal.   

(iv) A
 is con-k-normal. 

(v) 
1A

 is con-k-normal, if 
1A

exist.

(vi) 
†A  is con-k-normal. 

(vii) A  is con-k-normal,where 

Proof: (i)  (ii): A  is con-k-
TA A K K A A    

                                                      

 ( ) ( )A A K K A A 
TA A K KA A 

                A  is con-k-normal.

           (i) (iii): A  is con-k-
TA A K K A A  ( ) ( )A A K K A A 

 
( ) ( )T T T T T T TK A A A A K 

Pre and post multiply by K on both sides,
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0

i

 
 
 

 is con-k-normal for k= (1, 2), 

n n  the following conditions are 

1A exist. 

  is a real number. 

-normal 

                                                      

( ) ( )TA A K K A A   

A A K KA A   

normal. 

-normal 

( ) ( )T T TA A K K A A 
 

( ) ( )T T T T T T TK A A A A K TK AA A AK 
 

Pre and post multiply by K on both sides, 
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TAA K K A A   TA  is con-k-normal. 

(i) (iv): A  is con-k-normal 
TA A K K A A 

( ) ( )TA A K K A A     

 ( ) ( )TK A A A A K
       TK A A A A K      

 Pre and post multiply by K on both sides,  
 TA A K K A A   A

 is con-k-normal. 

(i)  (v): A  is con-k-normal  
TA A K K A A 

1 1( ) ( )TA A K K A A     

 
11 1 1 1 1( ) ( )TK A A A A K
      

 

 1 1 1 1( ) ( )TK A A A A K     
 

 1A
 is con-k-normal, if 

1A
exist. 

 (i)  (vi): A  is con-k-normal 
TA A K K A A 

† †( ) ( )TA A K K A A                        

 † † † †( ) ( )TK A A A A K   †A  is con-k-normal. 

 (i)  (vii): A  is k-normal
TA A K K A A 

2 2( ) ( )TA A K K A A    

( )( ) ( )( )TA A K K A A                                            

( ) ( ) ( ) ( )TA A K K A A      

 ( )A  is con-k-normal. 

 
Theorem 3.4:.If A and B are con-k-normal matrices. Then 
(A+B) and (A-B) are con-k-normal matrix. 
 
Proof: Given A and B are con-k-normal. Then  
 

TA A K K A A   ------------- (1) 

and 
TB B K K B B  ------------- (2)  

Adding equations (1) and (2), we get,  
T TA A K B B K K A A K B B     

Pre and post multiply by ( )AB A B K   and 

( )T TK A B B A we get, 

( ) ( ) ( ) ( )T T T TAB A B K AA BB K K A A B B K A B B A           

  [ ( ) ( )] [( ) ( ) ]T TA A B B A B K K A B A A B B           

    ( ) ( ) ( )( )T TA B A B K K A B A B     
 

    ( ) ( ) ( ) ( )TA B A B K K A B A B      

Therefore ( )A B is con-k-normal. 

Similarly, we can prove ( )A B is con-k-normal.  

Theorem 3.5: Let ,n nA �
 

(i). If A is con-k-normal, then (iA) is con-k-normal. 
(ii). If A is con-k-normal, then (-iA) is con-k-normal. 
Proof:  (i) Given A is con-k-normal.  

That is, 
TA A K KA A  2 2( ) ( )Ti A A K i KA A        

 ( )[ ( ) ] ( ) [ ( )]TiA iA K K iA iA   

( )( ) ( ) ( )TiA iA K K iA iA   

       (iA) is con-k-normal. 
Similarly, we can prove (-iA) is con-k-normal. 

Theorem 3.6: Let n nA � be con-k-normal, then AA  and

AA are k-normal.  

Proof: Let A be con-k-normal, if
TA A K KA A  . 

We have, ( )( ) ( )( )TAA AA K AA A A K  ( )TA AA A K
2( )TA K AA A K  

( )A A A A K  2( )AA K …………(3) 

and ( ) ( ) ( ) ( )TK AA AA K A A AA  ( )( )TKA A A A

( )( )AA K A A     

( )( )AA AA K  2( )AA K …………….(4) 

From (3) and (4), we have, ( )( )AA AA K  ( ) ( )K AA AA
 

Therefore, AA  is k-normal. 

Similarly, we can prove AA is k-normal. 

Remark 3.7: The reverse implication AA  and AA are k-
normal, then A is con-k-normal is false. 

Theorem 3.8[1]: Let , n nA B � be con-k-normal matrices, 

then .TAB BA A B BA    

In words, if A is con-commutes with some matrix B, then 
TA

con-commutes with B as well. 
Proof:  Given A and B are con-k-normal matrices, then 

TA A K K A A  and 
TB B K K B B  .Since AB BA

is trivially true for B=A. Let A be con-k-normal and let B be 

con-commute with A. AB BA
 

For, 
0ˆ

0

A
A

A

 
  
 

 and 
0

ˆ
0

B
B

B

 
  
 

. We have

ˆ ˆAB AB AB   and ˆB̂A BA BA  . 

  Â and B̂ commutes. 

Since A is con-k-normal, then A
is con-k-normal. 

  Â is con-k-normal, then   Â
 is con-k-normal. 

Therefore,  ˆ ˆˆ ˆA B BA   which is equivalent to 

.TA B BA  
 
Con-k-unitary matrices 
 

Definition 4.1:  A matrix n nA �  is said to be con-k-

unitary, if
TA A K K A A K   . 

168             International Journal of Current Research, Vol. 4, Issue, 01, pp.167-169, January, 2012 

 



Example 4.2: Let

1

2 2

1

2 2

i

A
i

 
 
 
 
 
 

 is con-k-unitary for

(1, 2)k  , where 
0 1

1 0
K

 
  
   

Theorem 4.3: For n nA �  the following conditions are 

equivalent. 

(i)  A  is con-k-unitary.    

(ii) A  is con-k- unitary. 

(iii) 
TA is con-k- unitary.   

(iv) A
 is con-k- unitary. 

(v) 
1A

 is con-k- unitary, if 
1A

exist. 

(vi) 
†A  is con-k- unitary. 

(vii) A  is con-k- unitary, where   is a real number. 

Theorem 4.4: Let , n nA B � . If A and B are con-k-

unitary matrices, then AB is con-k-normal. 
Proof:  Let A and B are con-k-unitary, then 

TA A K K A A K    and .TB B K K B B K    

To prove AB is con-k-normal. 
Now, ( )( ) ( ) ( )AB AB K AB B A K A BB A K AA K K          

     
……………..(5) 

( ) ( ) ( )( ) ( )T T T T T TK AB AB K B A AB KB A A B KB B K     

        
…………(6)

 
From (5) and (6), we have 

( ) ( ) ( ) ( ).TAB AB K K AB AB   

Therefore AB is con-k-normal. 

Corollary 4.5: Let , n nA B � . If A and B are con-k-

unitary matrices, then AB is                              con-k-unitary. 

Theorem 4.6: Let , n nA B � . If A and B are con-k-

unitary matrices, then BA is                                con-unitary. 
Proof:  Let A and B are con-k-unitary, then 

TA A K K A A K   …………(7) 

and 
TB B K K B B K   …………(8) 

From (7) and (8), we have 
2T TA A K B B K K A AK B B K I      

           
TKB B K K A AK I     

          
TB B A A I    

 
 
 
 
 
 
 
 
 
 
 

       
2 2TB K B A K A I     

         
T TB A A KKB A KK B BA I     

            ( )( ) ( ) ( )TBA BA BA BA I    

Therefore, BA is con-unitary. 

Theorem 4.7: Let n nA �  and , TA SU A SV  , where 

U and V are con-k-unitary matrices and S is a symmetric 
matrix, then A is con-k-normal. 

Proof: Let A SU and
TA SV , where U and V are con-k-

unitary. 
Then,  

2( )( )AA K SU SU K SUU SK SUU K SK SSK        

           
…………..(9)

 
( )( )TKAA KA A K SV V S SKVV S SVVKS SVVSK SSK           

         
………….(10)

 

From (9) and (10), we have
TAA K KA A KA A   . 

Therefore, A is con-k-normal. 
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