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INTRODUCTION 
 
For items like potato, onion, cabbage, cauliflower etc., it is 
normally observed that price of the item decreases with time at 
the beginning of the production season due to availability in 
the market and reaches to a minimum value. Price of the item 
remains constant at this minimum value during the major part 
of the season due to sufficient availability of the item in the 
market and towards the end of the season due to scarcity, cost 
again increases gradually and reaches its off season value. This 
price remains stable during the remaining part of the year. A 
considerable number of research works have been done for 
seasonal products by several researchers Zhou 
Chen and Chang (2007); Panda et al. (2008); Banerjee and 
Sharma  2010A, 2010B). In most of these research works, it is 
assumed that price of the item decreases with time or demand 
increases with time. But the above mentioned real life 
phenomenon of a seasonal product is overlooked by the 
researchers. Another shortcoming of these research w
assumption that the duration of the season of such products as 
crisp value. Although, the duration of the season for an item is 
finite but it varies from year to year due to environmental 
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normally observed that price of the item decreases with time at 
the beginning of the production season due to availability in 
the market and reaches to a minimum value. Price of the item 

s constant at this minimum value during the major part 
of the season due to sufficient availability of the item in the 
market and towards the end of the season due to scarcity, cost 
again increases gradually and reaches its off season value. This 
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changes. So, it is worthwhile to assume this duration as a fuzzy 
parameter. Occurrence of fuzzy seasonal time leads to 
optimization problem with fuzzy objective function. In t
two decades extensive research work has been done on 
inventory control problems in fuzzy environment (Lee 
(1991); Maiti et al. (2014); Lam and Wong
Maiti (2000); Mondal and Maiti
Bera et al. (2012). These problems considered different 
inventory parameters as fuzzy numbers which render fuzzy 
objective function. As optimization in fuzzy environment is 
not well defined some of these researcher transform the fuzzy 
parameters as equivalent crisp number o
then the objective function is transformed to an equivalent 
crisp number/interval (Maiti and Maiti
2012). Some of the researchers (Mandal and Maiti, 2002
the fuzzy objective as fuzzy goal whose membership function 
as a linear/non-linear fuzzy number and try to optimize this 
membership function using Bellman Zadeh's principle 
(Bellman and Zadeh, 1970). Maiti and Maiti (2006) propose a 
technique where instead of objective function pessimistic 
return of the fuzzy objective is optimized. They use necessity 
measure on fuzzy event to determine this pessimistic return 
and propose fuzzy simulation process to find this return 
function. Recently, Maiti (2008, 20
where possibility/necessity measure of objective function 
(fuzzy profit) on fuzzy goal is optimized to find optimal 
decision. All these studies transform the fuzzy objective of the 
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problem to an equivalent crisp objective and solution of the 
reduced problem is taken as approximate solution of the fuzzy 
problem. But there exist always some error in such 
approximation. Again in present day competitive market, an 
erroneous inventory decision may invite a huge loss in 
business. So modeling of present day inventory control 
problems must be very realistic and a methodology is required 
which can deal with fuzzy objective function directly without 
reducing it to crisp form. Again, most of the seasonal products 
have finite lifetime and are deteriorating in nature (Mahata and  
Goswami, 2010). Rate of deterioration increases with time and 
actually depends on the amount of lifetime left.  Rate of 
deterioration becomes 100% when age of product covers the 
lifetime. In the literature, there are several investigations for 
deteriorating items such as Jaber et al. (2009); Yadav et al. 
(2011); Sana (2011) and others. Most of the inventory articles 
are developed with constant deterioration. But the deterioration 
mentioned earlier, deterioration increases with time as stress of 
units on others causes damage. According to the author’s best 
knowledge, very few articles have been published 
incorporating time varying deterioration Sarkar (2011). 
 
Use of soft computing techniques for inventory control 
problems is a well established phenomenon. Several authors 
use Genetic Algorithm (GA) in different forms to find 
marketing decisions for their problems. Pal et al. (2009) uses 
GA to solve an EPQ model with price discounted promotional 
demand in an imprecise planning horizon. Roy et al. (2009) 
used a GA with varying population size to solve a production 
inventory model with stock dependent demand incorporating 
learning and inflationary effect in a random planning horizon.  
Bera and Maiti (2012) used GA to solve multi-item inventory 
model incorporating discount.  Maiti et al. (2009) used GA to 
solve inventory model with stochastic lead time and price 
dependent demand incorporating advance payment. Mondal  et 
al. (2002) uses a dominance based GA to solve a production-
recycling model with variable demand, demand-dependent 
fuzzy return rate. Combining the features of GA and PSO a 
hybrid algorithm PSGA is used by Guchhait et al. (2013) to 
solve an inventory model of a deteriorating item with price and 
credit linked fuzzy demand. All these soft computing 
techniques are not capable to deal with fuzzy objective 
directly. 
 
From the above discussion it is clear that there are some 
lacunas in fuzzy inventory models of deteriorating items, 
specially for seasonal products. In this research work an 
attempt has been made to reduce these lacunas. The aim of this 
research work is fourfold:  
 
 The aim of this research work is fourfold: 
 

 Firstly to model price of a seasonal product as a 
function f1(t) of time which decreases monotonically for 
a duration H1 at the beginning of the season and reaches 
a minimum value f1(H1). The price remains at this value 
f1(H1) during a period H2. Then it again follows an 
increasing function f2(t) and after a period H3  it reaches 
the off season value, i.e., f1(0)=f2( H1+H2+H3).  

 Secondly to model the season length (H1+H2+H3) as 
imprecise parameter. 

 Thirdly for such a realistic inventory model, rate of 
deterioration as increasing function of time which 
actually depends on the lifetime of the item. 

 At length to introduce an approach which can deal with 
fuzzy optimization problem, without reducing the 
objective function to any deterministic form. 

 
Here, inventory model for a deteriorating seasonal product is 
developed whose demand depends upon the unit cost of the 
product. Unit cost of the product is time dependent. During the 
beginning of the period as availability of the item gradually 
increases, unit cost decreases monotonically with time and 
reaches a constant value when availability of the item becomes 
stable. Unit cost remains   constant until the items availability 
again decreases towards the end of the season. Then as 
availability decreases, unit cost gradually increases and reaches 
its value as it was at the beginning of the season and then the 
season ends. Here exponential increasing and decreasing rate 
of unit cost function is considered. Rate of deterioration  of 
the item increases with time and is of the form  =[1/(1+R-t)], 
where R is the lifetime of the product, t is the  time passed 
after the arrival of the units in the inventory.  
 

Clearly as 1,  Rt , i.e., when t=R, all units in the 

inventory will be spoiled. It is assumed that time horizon of the 
season is fuzzy in nature. In fact three parts in which unit cost 
function can be divided are considered as fuzzy number. The 
model is formulated to maximize the total proceeds out of the 
system which is fuzzy in nature. Using credibility measure of 
fuzzy events, fuzzy objectives due to different solutions are 
compared and a PSO is used following this comparison 
approach of objectives to find marketing decision for the DM. 
In a particular case when planning horizon is crisp the model is 
also solved using same PSO. The models are illustrated with 
some numerical examples and some sensitivity analyses have 
been presented. 
 
Mathematical Preliminaries 

 represents the set of real numbers A
~

and B
~

 be two fuzzy 

numbers with membership Let functions 
A
~  and 

B
~

respectively. Then taking degree of uncertainty as the 
semantics of fuzzy number, according to Liu and Iwamura 
(1998A, 1998B): 

 

Pos( A
~

* B
~

)=sup{min(
A
~ (x), 

B
~ (y)), x, y yx *, }      (1) 

 
Where the abbreviation Pos represent possibility and * is any 

one of the relations >, <, =, ≤, ≥. Analogously if B
~

 is a crisp  
number, say b, then  

 

Pos A
~

*b)=sup{
A
~ (x), x bx *, }                                  (2) 

 

On the other hand necessity measure of an event ( A
~

* B
~

) is a 
dual possibility measure. The grade of necessity of an event is 
the grade of impossibility of the opposite event and is defined 
as  
 

Nes( A
~

* B
~

)=1-Pos ) 
~

* A
~

( B                                             (3) 
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Where the abbreviation Nes represents measure and ) 
~

* A
~

( B  

represents complement of the event A
~

* B
~

. 

Similarly credibility measure of an A
~

* B
~

 is denoted by Cr         

( A
~

* B
~

) and is  defined as (Liu and Liu, 2003)  
 

Cr( A
~

* B
~

)=[Pos( A
~

* B
~

)+Nes( A
~

* B
~

)]/2                           (4) 
 

If A
~

 , B
~

 and C
~

= )
~

,
~

( BAf where :f be 

binary operation then membership function 
C
~   of C

~
 can be 

obtained using Fuzzy Extension Principle (Zadeh, 1965, 1973) 
as 
 

}),,(,,)),(),(sup{min()( ~~~  zyxfzandyxyxz
BAC

  (5) 

Triangular Fuzzy Number (TFN): A TFN A
~

 is specified by 
the triplet (a1, a2, a3) and is defined by its continuous 

membership function
A
~ : ]1,0[X  as follows (cf. Fig-1): 

 



























otherwise

axaif
aa

xa

axaif
aa

ax

x
A

0

)( 32

23

3

21

12

1

~

 

 

 
 
Using these definitions the following lemmas can be derived 

Lemma1: If A
~

=( a1, a2, a3) and B
~

=(b1, b2, b3) be TFNS then  
 






























otherwise

babaif
bbaa

ba

baabif
aabb

abab

baif

BACr

0

,

,
)(2

)(2

1

)
~~

(

1322

1223

13

3122

1223

1223

31

 
 

Dominance based Particle Swarm Optimization technique 
 
During the last decade, nature inspired intelligence becomes 
increasingly popular through the development and utilization 
of intelligent paradigms in advance information systems 
design.  Among the most popular nature inspired approaches, 

when task is   to optimize with in complex decisions of data or 
information, PSO draws significant attention. Since its 
introduction a very large number of applications and new ideas 
have been realized in the context of PSO (Najafi et al., 2009; 
Marinakis and Marinaki, 2010). But till now PSO is not 
significantly used to solve inventory control problems 
(Guchhait et al., 2013). A PSO normally starts with a set of 
solutions (called swarm) of the decision making problem under 
consideration. Individual solutions are called particles and food 
is analogous to optimal solution. In simple terms, the particles 
are flown through a multi-dimensional search space, where the 
position of each particle is adjusted according to its own 
experience and that of its neighbors. The particle i has a 
position vector (Xi(t)), velocity vector (Vi(t)), the position at 
which  the best fitness Xpbesti(t) encountered by the particle so 
far  and the best position of all particles Xgbest(t) in current  
generation t. In generation (t+1), the position and velocity of 
the particle are changed to Xi(t+1) and Vi(t+1) using following 
rules: 
 

))()(())()(()()1( 2211 tXtXrtXtXrtVwtV igbestiipbestii                (6) 

 

)1()()1(  tVtXtX iii                                                 (7) 

 

The parameters 1  and 2  are set to constant values, which 

are normally taken as 2, r1  and r2 are two random values 
uniformly distributed in [0,1], w (0<w<1) is inertia weight 
which controls the influence of previous velocity on the new  
velocity. Here (Xpbesti(t)) and (Xgbest(t)) are normally determined 
by comparison of objectives due to different solutions. So for 
optimization problem involving crisp objective the algorithm 
works well. The algorithm can be tactically used to optimize 
fuzzy objective also where a solution is said to be best solution 
among a set of solutions if fuzzy objective due to the solution 
dominates the fuzzy objectives of other solutions of the set. 

For maximization problem a objective 1

~
Z may dominate other 

objective 2

~
Z if Cr ( 5.0)

~~
21  ZZ . This is a valid fuzzy 

comparison as Cr (  )
~~

21 ZZ Cr ( 1)
~~

21  ZZ . If 

objective value due to solution Xi dominates objective value 
due to solution Xj, we say that Xi dominates Xj. Using this 
dominance property PSO can be used to optimize crisp 
optimization problem. This form of the algorithm is named as 
dominance based PSO (DBPSO) and the algorithm takes the 
following form. In the algorithm Vmax represent maximum 
velocity of a particle, Bil(t) and Biu(t) represent lower and upper 
boundary of the i-th variable respectively. check_constraint 
(Xi(t)) function check whether solution Xi(t) satisfies the 
constraints of the problem or not. It returns 1 if the solution 
Xi(t) satisfies  the constraints of the problem otherwise it 
returns 0. 

 
Proposed DBPSO  

 
1. Initialize 21,  , w, N and Maxgen. 

2. Set iteration counter t=0 and randomly generate initial 
swarm P(t) of N particles (solutions). 

3. Determine objective value of each solution Xi(t) and 
find Xgbest(t) using dominance property. 

4. Set initial velocity Vi(t), )()( tPtX i  and set 

Xpbesti(t)=Xi(t), )()( tPtX i  . 

5. While (t<Maxgen) do 
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6. For i=1:N do 
7. ))()(())()(()()1( 2211 tXtXrtXtXrtVwtV igbestiipbestii  

 
8. If (Vi(t+1)>Vmax) then set Vi(t+1)=Vmax. 
9. If (Vi(t+1)<-Vmax) then set Vi(t+1)=-Vmax 
10. Xi(t+1)=Xi(t)+Vi(t+1) 
11. If (Xi(t+1)>Biu(t)) then set Xi(t+1)=Biu(t). 
12. If (Xi(t+1)<Bil(t)) then set Xi(t+1)=Bil(t). 
13.  If check_constraint (Xi(t+1))=0 
14.  Set  Xi(t+1)=Xi(t), Vi(t+1)=Vi(t) 
15.  Else 
16.  If Xi(t+1) dominates Xpbesti (t) then set Xpbesti 

(t+1)=Xi(t+1). 
17.   If Xi(t+1) dominates Xgbest (t) then set Xgbest 

(t+1)=Xi(t+1). 
18.  End If. 
19.  End For. 
20. Set t=t+1. 
21. End While. 
22. Output: Xgbest(t). 
23. End Algorithm 

 
Different procedures of DBPSO 

 
(a) Representation of solutions: A n dimensional real vector 
Xi=(xi1, xi2,…….,xin), is used to represent i-th solution, where 
xi1, xi2,……, xin represent n decision variables of the decision 
making problem under consideration. 

 
(b) Initialization: N such solutions Xi=(xi1, xi2,…….,xin), 
i=1,2,….,N, are randomly generated by random number 
generator within the boundaries for each variable [Bjl, Bju], 
j=1,2,……,n. Initialize (P(0)) sub function is used for this 
purpose. 

 
(c) Dominance property: For crisp maximization problem, a 
solution Xi dominates a solution Xj if objective value of Xi is 
greater than that of Xj. For the fuzzy optimization problem a 

solution Xi dominates a solution Xj if Cr ( 5.0)
~~

 ji ZZ  where iZ
~

and jZ
~

are objective values of Xi and Xj respectively.                

It is valid fuzzy comparison operators as Cr (  )
~~

ji ZZ Cr  

( 1)
~~

 ji ZZ . 

 
(d) Implementation: With the above function and values the 
algorithm is implemented using C-programming language. 
Different parametric values of the algorithm used to solve the 
model are as follows (Engelbrech, 2005),

7298.0,49618.1,49618.1 21  w .  

 
Assumptions and notations for the proposed model 

 
The following notations and assumptions are used in 
developing the models. 

 
(i) Inventory system involves only one item. 
(ii) Time horizon (H) is finite and H=H1+H2+H3. 
(iii) Unit cost, i.e., purchase price p(t) is a function of t and is 
of the form 

 

1

1 1 2

3

1

1 1 2

( )

1 2 1 2 3

0

( )

ct

cH

cH t H H

H

be for t H

p t be for H t H H

Ae for H H t H H H





 


 


   


       

 

where A= 1cHbe
 

 
(iv) Selling price s(t) is mark-up m of p(t) and m takes the 
values m1, m2 and m 3during (0,H1), 
 (H1, H1+H2)   and (H1+H2, H1+H2+H3) i.e. s(t)=m[=m1, 
m2,m3] p(t). 
(v) Demand is a function of selling price s(t) and is of the form 

D(t)= 0 01
1

[ ( )] [ ( )]

D DD
where D

s t p t m  
  , D0>0 

(vi)  The lead time is zero. 

(vii) Deterioration rate ( )t is a function of time where 

1

1
( )

1 j

t
R T t





  

 where R is the maximum lifetime of the 

product. This form of deterioration comes from the fact that as 

(t-Tj-1)  R, ( )t  1 i.e rate of  deterioration tends to 100%. 

(viii) Ti is the total time that elapses up to and including the i-
th cycle (i=1,2,….,n1+n2+n3) where n1+n2+n3 denotes the  
total number of replenishment to be made during the interval 
(0, H1+H2+H3) and T0=0. 
(ix) n1 is the number of replenishment to be made during 
(0,H1) at t=T0, T1,……,

1 1nT  So, there are n1 cycles in this 

duration. As purchase cost decreases during this session, so 
demand increases. Hence, successive cycle length must 
decrease. Here,  is the rate of reduction of successive cycle 
length and t1 is the first cycle length. So, i-th cycle length ti=t1-
(i-1) .          
               

11 1 1
1

( 1)
, 1,2,....., . ,

2

i

i j n
j

i i
T t it i n Clearly T H




      

                      

1 1
1 1 1

1 1 1

1 1

( 1)
,

2

2( )

( 1)

n n
Thus n t H

n t H

n n






 


 


                           (8) 

 
Here, t1 is decision variable. 
 
(x) n2 be the number of replenishment to be made during (H1, 
H1+H2). Since purchase cost is constant,   demand is also 
constant during this interval. So, all the sub-cycle length in this 
interval is assumed as constant. Replenishment are done at    
                    

1 1 1 2 1 1

2
1 1 2

2

, ,........, ( 1) , 1,2,...,n n n n n j n

H
t T T T where T T j j n

n
         

 
(xi) n3 is the number of replenishment to be made during 
(H1+H2, H1+H2+H3). During this interval, purchase cost 
increases, as a result demand decreases. So, the duration of 
placing of order gradually increases. Here,  be the rate of 

increase of cycle length. Let t1
/ be the initial cycle length. Then 

i-th cycle length ti
/=t1

/+(i-1)  . 
/

3

/
1 3, ( 1) .nThus t t n     

Orders are made at 
1 2 1 2 1 2 31,.......... 1, ,n n n n n n nt T T T      Where     
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(x)  ch is the holding cost per unit/unit time. 
(xi)  c0 is the ordering cost. 
(xii) Q(Ti) is the order quantity at t=Ti. 
(xiii) q(t) is the inventory level at time t. 
(xiv) Shortages are not allowed. 
(xv) Z is the total profit from the planning horizon. 
 
A wavy bar (~) is used with this symbol to represent 
corresponding fuzzy numbers when required. 
 

 
 

Model development and analysis 
 
In the development of the model, it is assumed that at the 
beginning of every j-th cycle [Tj-1, Tj], an amount Q1j units of 
item is ordered. As lead time negligible, replenishment of an 
item occurs as soon as order is made. Item is sold during the 
cycle and inventory level reaches zero at time t=Tj. Then order 
for next cycle is made. Here, selling price is a markup of initial 
purchase cost for each cycle. The inventory situation and the 
purchase cost are shown in Fig-2 and Fig-3. 
 
Formulation of the model in crisp environment 
 
This part is formulated in three phases. 
 

Formulation for first phase (i.e., 10 Ht  ): Duration of 

j-th ( 11 nj  ) cycle is [Tj-1 , Tj] where 

2/)1(11  jjjtT j   at the beginning of the cycle 

inventory level is Q1j. So, the governing differential equation 
of the model in the presence of deterioration of the item during 

jj TtT 1  is given by   

jDqt
dt

tdq
 )(

)(
                                                       (10) 

 

where 
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Solving the above differential equation using the initial 
condition at t=Tj, q(t)=0, we get  
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So, the holding cost for jth ( 11 nj  ) cycle, jH1 is given 

by 
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Thus, the total holding cost during (0, H1), HOC1, is given by  
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Total purchase cost during (0, H1), PC1, is given by      
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where 
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Total ordering cost during (0, H1), OC1, is given by  
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where Q1j is given by  (12) 
 

Selling price for j-th ( 11 nj  ) cycle SP1j, is given by 

 

 

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j
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T
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Total selling price during (0, H1), SP1, is given by  
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Formulation of second phase (i.e., 211 HHtH  ): In 

the second phase, the purchase price of an item remains 
constant. So, the demand of customer is taken as constant. 

During of  j-th ( )211 nnjn   cycle is  [Tj-1 , Tj]. The 

governing differential equation of the model of deteriorating 

item during jj TtT 1  is given by 
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Solving the above differential equation using the initial 
condition t=Tj, q(t)=0, we get  
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So, the holding cost for j-th ( 211 nnjn  ) cycle, jH 2 , 

is given by 
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Thus, the total holding cost during (H1, H1+H2), HOC2, is 
given by 
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Total purchase cost during (H1, H1+H2), PC2, is given by      
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Total ordering cost during (H1, H1+H2), OC2, is given by  
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where Q2j is given by  (19) 
 

Selling price for j-th ( 211 nnjn  ) cycle SP2j, is given  
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Total selling price during (H1, H1+H2), SP2, is given by  
 







21

1 1

22
nn

nj
jSPSP                                                              (23) 

 
Formulation of third phase  
 

(i.e., 32121 HHHtHH  ):  In the second phase, 

duration of j-th ( )32121 nnnjnn   cycle is   

],[ 1 jj TT   
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and at the beginning of cycle inventory level is Q3j . So, 
instantaneous state q(t) of deteriorating item during 

jj TtT 1  is given by    
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Solving the above differential equation using the initial 
condition t=Tj, q(t)=0, we get  
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So, the holding cost for j-th ( 32121 nnnjnn  ) cycle,

jH3 , is given by 
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Thus, the total holding cost during  
 

( 32121 HHHtHH  ), HOC3,  
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Total purchase cost during ( 32121 HHHtHH  ),  

 
PC3, is given by                                   
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Total ordering cost during ( 32121 HHHtHH  ), 
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where Q3j is given by  (26) 
 

Selling price for j-th ( 32121 nnnjnn  ) cycle , SP3j 
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Total selling price during ( 32121 HHHtHH  ), SP3,  
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Thus, total profit Z, for this model over the planning horizon  

( 321 HHH  ),  is given by 

 
Z=(SP1+SP2+SP3)-(PC1+PC2+PC3)-
(HOC1+HOC2+HOC3)-(OC1+OC2+OC3)                    (31) 
 
Mathematical Model:  According to the above discussion, as 
lifetime of the product is R, so, no cycle should exceed R 

which implies 
3

/
1 2 2, / , .nt R H n R t R    Therefore, the 

problem reduces to determine the decision variables
/

1 1 1, 2 3 1 2 3, , , , , ,t t m m m n n and n . The problem becomes  

 

Maximize Z Subject to  
3

/
1 2 2, / , .nt R H n R t R             (32) 

 
This constrained optimization problem is solved using 
proposed DBPSO for crisp objective function 
 
Mathematical Model in Fuzzy Environment: As discussed 
in introduction section, in real life phase intervals H1, H2 and 

H3 are imprecise in nature i.e 21

~
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~
HH and 3

~
H respectively, 

then the profit function Z reduces to the fuzzy number Z
~

 
whose membership function is a function of the decision 
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/, m1, m2, m3, n1, n2 and  n3. Also the last cycle 

length 3
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nt . So, in this case problem 
reduces to the following fuzzy optimization problem 
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If  21
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HH and 3
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H  are considered as TFNs (H11, H12 ,H13),   

(H21, H22 ,H23) and (H31, H32 ,H33) respectively, then Z
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becomes a TFN (Z1, Z2, Z3), where Zi=value of Z for H1=H1i, 

H2=H2i, H3=H3i, i=1,2,3. In this case 3
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nt also becomes a TFN 

( ,31
/
nt ,32

/
nt 33
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nt ). So it is an obvious assumption that 

fuzzy constraints should necessarily hold. The problem reduces 
to  

Maximize ),,(
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321 ZZZZ  Subject to    

 

RtRnHRt n  3
/

221

~
,/

~
,                                              

(34) 
 

This constraint optimization problem is solved using proposed 
DBPSO.                    
 

Numerical Experiments
 

 

Results obtained for crisp environment: To illustrate the 
model following hypothetical set of data is used. This data set 
is taken for items like rice, potato, wheat, onion, cabbage, 
cauliflower, etc, whose demand exists in the market throughout 
the year. When new crops come in the market, then its price 
gradually decreases during some weeks (say H1) and reaches a 
lowest level. This minimum price prevails for few weeks (say 
H2). Then again it gradually increases during few weeks (say 
H3) and reaches its normal value. This normal price prevails 
remaining part of the year. For an item like potato, values of 
H1, H2 and H3 are about 5 weeks, 15 weeks, 7 weeks in the 
state of West Bengal, India. Normal price of the item 
throughout the year is about $3 for a 10 kg bag. Lowest price 
of it in the season is about $2 for a 10 kg bag.  Keeping this 
real life situation in mind the following data set is fixed to 
illustrate the modes in crisp environment. In the data set 10 kg 
of the item is considered as one unit item, one week is 
considered as unit time and costs are represented in $. 
 
b=10, c=0.2, H1=5(weeks), H2=(15 weeks), H3=7(weeks), 
D0=1500,  =2.5, ch=0.5, c01=10, c02=0.5, R=3. 
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For the above parametric values, results are obtained via 
DBPSO for different values of n1, n2, n3 and presented in 
Table-1. It is found that profit is maximum for n1=3, n2=13, 
n3=4. 

 
Table 1. Results obtained for crisp model via DBPSO 

 
n1 n2 n3 m1 m2 m3 t1 t/

1 Profit($) 

2 11 3 2.966 2.493 3.013 2.848 2.015 267.660 
2 11 4 2.965 2.494 2.577 2.841 1.407 272.087 
2 11 5 2.967 2.493 2.378 2.841 1.067 270.095 
2 12 3 2.968 2.431 3.013 2.843 2.016 270.222 
2 12 4 2.967 2.431 2.577 2.843 1.407 274.648 
2 12 5 2.969 2.431 2.378 2.843 1.067 272.656 
2 13 3 2.967 2.380 3.014 2.842 2.015 270.998 
2 13 4 2.966 2.380 2.577 2.481 1.404 275.424 
2 13 5 2.968 2.380 2.377 2.843 1.068 273.432 
2 14 3 2.968 2.338 3.014 2.842 2.014 270.347 
2 14 4 2.951 2.339 2.580 2.843 1.398 274.771 
2 14 5 2.967 2.339 2.377 2.846 1.067 272.781 
2 15 3 2.966 2.303 3.013 2.843 2.014 268.537 
2 15 4 2.965 2.303 2.578 2.841 1.408 272.964 
2 15 5 2.964 2.303 2.378 2.845 1.069 270.972 
3 11 3 2.431 2.494 3.014 2.050 2.015 273.615 
3 11 4 2.431 2.493 2.578 2.052 1.408 278.042 
3 11 5 2.431 2.493 2.378 2.051 1.068 276.050 
3 12 3 2.431 2.431 3.015 2.051 2.015 276.177 
3 12 4 2.430 2.431 2.577 2.052 1.408 280.603 
3 12 5 2.430 2.431 2.378 2.050 1.069 278.611 
3 13 3 2.430 2.380 3.015 2.048 2.016 276.953 
3 13 4 2.432 2.380 2.577 2.051 1.408 281.379 
3 13 5 2.429 2.280 2.377 2.052 1.067 279.387 
3 14 3 2.431 2.338 3.013 2.051 2.015 276.302 
3 14 4 2.431 2.338 2.577 2.050 1.407 280.728 
3 14 5 2.431 2.339 2.378 2.051 1.070 278.737 
3 15 3 2.430 2.303 3.015 2.049 2.015 274.492 
3 15 4 2.429 2.304 2.577 2.051 1.404 278.919 
3 15 5 2.432 2.304 2.378 2.051 1.068 276.927 
4 11 3 2.242 2.493 3.013 1.588 2.011 272.806 
4 11 4 2.243 2.493 2.577 1.589 1.409 277.232 
4 11 5 2.242 2.493 2.377 1.589 1.069 275.240 
4 12 3 2.242 2.431 3.014 1.587 2.014 275.368 
4 12 4 2.243 2.432 2.577 1.588 1.404 279.794 
4 12 5 2.243 2.431 2.377 1.588 1.068 277.802 
4 13 3 2.090 2.397 3.186 1.882 1.671 271.915 
4 13 4 2.243 2.380 2.577 1.587 1.406 280.570 
4 13 5 2.243 2.380 2.377 1.589 1.067 278.578 
4 14 3 2.242 2.338 3.015 1.588 2.015 275.493 
4 14 4 2.242 2.578 2.338 1.589 1.408 279.919 
4 14 5 2.243 2.339 2.378 1.588 1.070 277.927 
4 15 3 2.149 2.438 2.815 1.657 1.069 268.540 
4 15 4 2.242 2.303 2.576 1.585 1.408 278.109 
4 15 5 2.242 2.304 2.378 1.590 1.069 276.118 

 
For above parametric values, results are obtained for different 
values of   and presented in Table-2. It is observed that as 

increases, profit decreases due to decrease of demand which 
agrees with reality. It is also found that as   increases for 

same values of n1, n2 and n3, t1 increases but t/
1decreases. 

Moreover, m1, m2 and m3 also decrease with increase of  . It 

happens because as   increases demand decreases in each 

cycle and demand is minimum when purchase cost is 
maximum. Again, purchase cost is maximum in first and last 
cycle of the whole planning horizon. As demand decreases 
length of first and lat cycle increases as a result t1 increases and 
t/

1 decreases. Again as demand decreases due to increase of   

to keep the demand high markup of selling price m1, m2 and 
m3 also decreases. All these observations agree with reality.  

 
For the above parametric values, results are obtained for 
different values of R and presented in Table-3. It is observed  

that as R increases profit increases. It happens because increase 
of R, i.e., increase of lifetime of the product, decreases rate of 
deterioration which in turn increases profit. 

 
Table 2. Results obtained for crisp model due to different 

 
 

  n1 n2 n3 m1 m2 m3 t1 t/
1 Profit($) 

2.40  4 14 4 2.308 2.405 2.652 1.568 1.422 408.060 
2.42 4 14 4 2.294 2.391 2.639 1.574 1.421 379.875 
2.44 4 14 4 2.280 2.377 2.622 1.575 1.417 353.036 
2.45 4 14 4 2.275 2.371 2.614 1.577 1.414 340.100 
2.46 3 13 4 2.459 2.407 2.606 2.042 1.415 327.583 
2.48 3 13 4 2.444 2.394 2.592 2.048 1.412 303.918 
2.50 3 13 4 2.432 2.380 2.577 2.051 1.408 281.379 
2.52 3 13 4 2.418 2.368 2.564 2.056 1.403 259.909 
2.54 3 13 4 2.405 2.356 2.550 2.063 1.401 239.454 
2.55 3 12 4 2.398 2.400 2.543 2.063 1.399 229.602 
2.56 3 12 4 2.391 2.393 2.537 2.066 1.397 220.124 
2.58 3 12 4 2.379 2.382 2.524 2.074 1.395 201.842 
2.60 3 12 4 2.368 2.370 2.512 2.078 1.392 184.421 

 
Table 3. Results obtained for crisp model due to different R 

 
R n1 n2 n3 m1 m2 m3 t1 t/

1 Profit($) 

2.70 3 13 4 2.494 2.418 2.652 2.035 1.426 268.028 
2.80 3 13 4 2.470 2.405 2.625 2.042 1.419 272.725 
2.90 3 13 4 2.450 2.392 2.601 2.045 1.412 277.169 
3.00 3 13 4 2.432 2.380 2.577 2.051 1.408 281.379 
3.10 3 13 4 2.412 2.370 2.557 2.054 1.401 285.375 
3.20 3 13 4 2.395 2.359 2.537 2.060 1.394 289.172 
3.30 3 13 4 2.378 2.349 2.519 2.065 1.390 292.784 
3.40 3 13 4 2.364 2.341 2.502 2.067 1.384 296.226 
3.50 3 12 4 2.352 2.376 2.486 2.070 1.380 299.586 

 
Results obtained for fuzzy environment: To illustrate the 
proposed inventory models, following input data are 
considered. In this case also hypothetical data set is used and 
source of this data has been discussed for crisp model. For 
crisp model it was considered that unit price of the item 
decreases during the period H1=5 weeks, but in reality it is 
about 5 weeks which is fuzzy in nature. Due to this reason here 
H1 is considered as TFN (4.75, 5, 5.2). Following the same 
argument other parameters are fixed and the data set are 
presented below. In the data set fuzzy numbers are considered 
as TFN types. 
 

b=10, c=0.2, 1

~
H =(4.75, 5, 5.2), 2

~
H =(14.5,15, 15.4), 3

~
H

=(6.8, 7, 7.3), D0=1500,  =2.5, ch=0.5, c01=10, c02=0.5, R=3. 

 
For the above parametric values, results are obtained via 
DBPSO for different values of n1, n2, n3 and presented in 
Table-4. It is found that profit is maximum for n1=3, n2=13, 
n3=4. 
 
For the above parametric values, results are obtained for 
different values of  and presented in Table-5. In this case also 

same trend of result is obtained as found in crisp model.
        

      
For the above parametric values, results are obtained for 
different values of R and presented in Table-6. As expected in 
this case also same trend of result is obtained as in crisp model, 
i.e., profit increases with increase of R, which agrees in reality. 

 
Practical Implications 

 
The present models have the following practical usages: 
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Table 4. Results obtained for fuzzy model via DBPSO 
 

n1 n2 n3 m1 m2 m3 t1 t/
1 Z1 ($) Z2 ($) Z3 ($) 

2 11 3 2.574 2.308 3.791 2.847 2.262 228.737 256.368 278.658 
2 11 4 2.87 2.494 2.577 3.000 1.407 240.271 271.818 297.868 
2 11 5 2.966 2.493 2.377 2.841 1.069 238.189 270.095 296.923 
2 12 3 2.968 2.31 3.014 2.841 2.016 238.976 270.222 295.011 
2 12 4 2.966 2.430 2.577 2.842 1.407 241.978 274.648 301.697 
2 12 5 2.967 2.430 2.378 2.839 1.066 239.207 272.656 300.876 
2 13 3 2.988 2.380 3.014 3.000 2.013 237.730 270.730 297.110 
2 13 4 2.966 2.380 2.578 2.841 1.407 241.415 275.424 303.684 
2 13 5 2.965 2.380 2.378 2.843 1.069 238.633 273.432 302.874 
2 14 3 2.966 2.339 3.015 2.843 2.014 236.591 270.347 297.400 
2 14 4 2.958 2.338 2.583 2.603 1.396 239.687 274.204 302.874 
2 14 5 2.967 2.339 2.378 2.844 1.068 236.810 272.782 303.280 
2 15 3 2.987 2.303 3.015 3.000 2.016 233.068 268.269 296.643 
2 15 4 2.967 2.304 2.577 2.841 1.408 236.749 272.964 303.216 
2 15 5 2.964 2.303 2.378 2.840 1.068 233.985 270.972 302.386 
3 11 3 2.430 2.493 3.014 2.050 2.016 242.198 273.615 298.644 
3 11 4 2.429 2.494 2.578 2.051 1.408 245.186 278.041 305.349 
3 11 5 2.431 2.494 2.378 2.051 1.071 242.412 276.050 304.531 
3 12 3 3.845 2.399 3.081 2.405 1.867 232.191 265.057 291.268 
3 12 4 2.429 2.431 2.578 2.050 1.408 246.207 280.603 309.301 
3 12 5 2.430 2.431 2.377 2.051 1.068 243.433 278.611 308.481 
3 13 3 2.445 2.406 2.875 2.341 1.868 240.726 275.220 302.273 
3 13 4 2.431 2.380 2.577 2.050 1.407 245.644 281.379 311.285 
3 13 5 2.430 2.380 2.378 2.049 1.068 242.875 279.387 310.461 
3 14 3 2.430 2.339 3.014 2.051 2.015 240.828 276.302 304.994 
3 14 4 2.431 2.338 2.578 2.051 1.407 243.822 280.728 311.691 
3 14 5 2.430 2.339 2.378 2.051 1.070 241.046 278.737 310.877 
3 15 3 2.430 2.304 3.015 2.051 2.014 237.986 274.492 304.116 
3 15 4 2.429 2.303 2.578 2.049 1.408 240.989 278.919 310.806 
3 15 5 2.430 2.303 2.378 2.052 1.070 238.208 276.927 309.995 
4 11 3 2.242 2.494 3.015 1.589 2.013 240.351 272.806 298.787 
4 11 4 20244 20493 2.577 1.589 1.406 243.350 277.232 305.482 
4 11 5 2.243 2.493 2.378 1.588 1.067 240.577 275.240 304.663 
4 12 3 2.242 2.431 3.013 1.589 2.014 241.366 275.368 302.745 
4 12 4 2.245 2.431 2.578 1.587 1.408 244.361 279.794 309.448 
4 12 5 2.243 2.431 2.377 1.588 1.068 241.587 277.802 308.627 
4 13 3 2.243 2.380 3.013 1.588 2.015 240.809 276.144 304.727 
4 13 4 2.244 2.380 2.587 1.588 1.407 243.798 280.570 311.432. 
4 13 5 2.243 2.380 2.378 1.587 1.068 241.029 278.578 310.608 
4 14 3 2.243 2.339 3.014 1.589 2.015 238.983 275.493 305.137 
4 14 4 2.243 2.338 2.577 1.587 1.407 241.987 279.919 311.826 
4 14 5 2.243 2.338 2.378 1.588 1.069 239.207 277.927 311.016 
4 15 3 2.243 2.303 3.007 1.596 2.016 236.144 273.682 304.245 
4 15 4 2.242 2.303 2.579 1.587 1.408 239.142 278.109 310.954 
4 15 5 2.242 2.303 2.379 1.590 1.069 236.363 276.118 310.141 

 
Table 5. Results obtained due to different 

 
for fuzzy model via DBPSO 

 
  n1 n2 n3 m1 m2 m3 t1 t/

1 Z1 ($) Z2($) Z3($) 

2.40  4 14 4 2.307 2.405 2.653 1.569 1.421 362.311 408.060 446.593 
2.42 4 14 4 2.294 2.391 2.637 1.571 1.417 335.816 379.875 416.973 
2.44 4 14 4 2.281 2.378 2.620 1.576 1.415 310.601 353.036 388.757 
2.46 3 13 4 2.458 2.406 2.607 2.040 1.413 289.050 327.583 359.851 
2.48 3 13 4 2.444 2.394 2.591 2.044 1.409 266.814 303.918 334.977 
2.50 3 13 4 2.431 2.380 2.577 2.050 1.407 245.644 281.379 311.285 
2.52 3 13 4 2.416 2.368 2.564 2.058 1.405 225.484 259.909 288.713 
2.54 3 13 4 2.404 2.356 2.550 2.061 1.401 206.298 239.454 267.187 
2.56 3 12 4 2.391 2.393 2.537 2.066 1.399 189.422 220.124 245.715 
2.58 3 12 4 2.380 2.382 2.525 2.069 1.396 172.281 201.842 226.476 
2.60 3 12 4 2.368 2.370 2.512 2.077 1.392 155.946 184.421 208.142 

 
Table 6. Results obtained due to different R for fuzzy model via DBPSO 

 
R n1 n2 n3 m1 m2 m3 t1 t/

1  Z1($) Z2($) Z3($) 

2.90 3 13 4 2.494 2.392 2.652 2.046 1.411 241.911 277.169 306.583 
3.00 3 13 4 2.431 2.380 2.577 2.050 1.407 245.644 281.379 311.285 
3.10 3 13 4 2.412 2.369 2.555 2.055 1.402 249.192 285.375 315.735 
3.20 3 13 4 2.394 2.359 2.537 2.059 1.394 252.559 289.172 319.966 
3.30 3 13 4 2.379 2.350 2.520 2.062 1.390 255.767 292.784 323.993 
3.40 3 13 4 2.364 2.340 2.502 2.066 1.387 258.822 296.226 327.826 
3.50 3 13 4 2.351 2.376 2.486 2.071 1.379 263.050 299.586 330.440 

 

44209                                           International Journal of Current Research, Vol. 08, Issue, 12, pp.44201-44211, December, 2016 



 It is applicable for the inventory control of seasonal 
goods like tomato, cabbage, cauliflower, potato, paddy, 
wheat, pulses etc whose demand exists throughout the 
year and their price found stable about half of the year. 
But at the beginning of the production season their price 
gradually decreases to a stable lowest value for a 
period. This lowest price persists for a period and then 
again gradually increases to normal price of the year. 
The model is developed for these types of items during 
their seasonal period. 

 Optimization of fuzzy objectives is not properly 
defined. So to deal with problem involving fuzzy 
objective one can compare the objectives due to 
different solutions by credibility measure of fuzzy 
events and then optimization can be done by any soft 
computing technique like PSO. 

 The methodology used for the formulation and 
determination of solution is quiet general and can be 
useable on any inventory control/ supply chain/ 
optimization problem in fuzzy environment. 

 
Conclusion 
 
Here, a real-life inventory model for deteriorating seasonal 
product is developed whose demand depends upon the unit 
cost of the product in fuzzy environment. Unit cost of product 
is time dependent. Lifetime of each item is finite and rate of 
deterioration depend on the age of the item. Unique 
contribution of the paper is fourfold: 
 

 Using credibility measure of fuzzy event and PSO an 
approach is followed which can deal with constrained 
fuzzy optimization problem without taking crisp 
equivalent of the fuzzy problem. 

 The model is developed for such items like food grains, 
pulses, potato, onion etc., whose stable demand exists 
in the market throughout the year but it fluctuates for a 
part of the year when they are produced in the field. 
Here modeling is done for such products during their 
season of grown. These items are normally stored in 
cold storage and when bought in the market items are 
fully deteriorated after a finite time R, which is 
considered here as lifetime of the product. For the best 
of author’s knowledge none have considered this type 
of inventory model. 

 Here for the first time unit cost of an item is modeled 
following real life situation, which gradually decreases 
with time during grown of the item in the field, then it 
retains the lowest value for a period and again gradually 
increases with time to normal price of the year. Though 
it is found for above mentioned items in every year, 
inventory practitioners overlooked this real life 
phenomenon. 

 It is assumed that time horizon of the season is fuzzy in 
nature. For the first time season of an item is considered 
as a combination of three imprecise intervals. In fact 
three parts in which unit cost function can be divided 
are considered as fuzzy numbers, which agree with 
reality. 

 
At length, though the model is formulated in fuzzy 
environment, demand or lifetime/deterioration of the product is 
not considered as imprecise in nature, though it is appropriate 
for these types of products. In fact, consideration of fuzzy 
demand or deterioration the inventory model leads to fuzzy 

differential equation for formulation of the model. Using 
proposed solution approach one cannot consider imprecise 
demand which is the major limitation of the approach. So, 
further research work can be done incorporating fuzzy demand 
and or deterioration in the imprecise planning horizon. Though 
the model is presented in crisp environment and fuzzy, it can 
be formulated in stochastic, fuzzy-stochastic environment. 
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