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1. INTRODUCTION

Levine (1970) introduced the class of g-closed sets, Veera Kumar (2004) introduced generalized closed set namely g#-closed. The
authors (2013) have already introduced  g#p-closed sets and their properties, Subramanian  in (2013) introduced g#p-continuous
maps in topological spaces Ali in (2013) study contrα -g#p-continuous function in topological space.  The notion of contrα-
continuity was introduced by Donchev (1996). Jafari and Noiri (2002) introduced and investigated contrα pre-continuous function
and contrα α-continuous function in topological space, Levine in (1960) studed strong continuity, almost contrα pre-continuous
function was introduced  by Ekici (2004). Throughout this paper (X,T) and (Y,T) (or simply X and Y) represents the non-empty
topological space on which no separation axiom are assumed  unless otherwise  mentioned for a subset A of X ,cl(A) and int(A)
represent  the closure  of A and interior of A respectively.

2.Preliminaries

In this section, we below list the definitions and results which are useful in the sequel.

Definition 2.1:

A subset A of a topological space (X,T) is called :

1- pre- open set (Mashhour et al., 1982): if ))(int( AclA  and pre-closed set AAcl ))(int( .

2- a regular open set (Stone, 1970): if ))(int( AclA 
3- an α- open set (Njastad, 1965): if )))(int(int( AclA  and α-closed set )))((int( AclclA  .
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Definition 2.2:

A subset A of a topological space (X,T) is called :

1- a generalized -closed (g-closed) set (Levine, 1970) if ( ) ⊆ whenever ⊆ and U is  open set in (X,T).
2- a generalized α-closed (gα-closed) set (Maki et al., 1993) if ( ) ⊆ whenever ⊆ and U is α- open set in (X,T). 				
3- a generalized#-closed (g#-closed) set (Veera Kumar, 2004) if ( ) ⊆ whenever ⊆ and U is αg- open set in (X,T), The

complement of g#-closed set is g#- open.
4- generalized - preclosed (gp-closed) set (Maki et al., 1996) if ( ) ⊆ whenever 	 ⊆ and U is open set in (X,T).
5- a generalized#- preclosed (g# p-closed) set (Pious Missier et al., 2013) if ( ) ⊆ whenever		 ⊆ and U is g#- open set

in (X,T). 	
Definition 2.3:

A function h: A → B is called :

1. Contrα - continuous (Dontchev, 1996) : if 	h S 	is closed in A,  open set S of B.
2. Contrα- precontinuous (Jafari and  Noiri, 2002) : if 	h S 	is preclosed in A,  open set S of B.
3. Almost-continuous (Singal and Singal, 1968): if 	h S 	is open in A,  regular open set S of B.
4. Almost-contrα continuous (Noiri, 1989):	h S 	is closed in A,  regular open set S of B.
5. Perfectly- continuous (Ekici, 2004): if 	h S 	is clopen in A,  open set S of B.
6. an R-map(Ekici,2008): if 	h S 	is regular open in A,  regular open set S of B.
7. g#p-continuous (Pious Missier et al., 2013): if h S 	is g#p-closed in A ,  closed set S of B.
8. g#p-irresolute (Pious Missier et al., 2013 ): if h S 	is g#p-closed in A ,  g#p-closed set S of B.
9. Strongly continuous (Levine, 1960): if 	h S 	is clopen in A ,  subset S of B.

Remark 2.4:

A space (X,T) is called a:

(1) TP
# - space (Pious Missier et al., 2013) if every g#p-closed set is closed.

(2) Every preclosed set (resp.α-closed, gα-closed and  closed set) (Pious Missier et al., 2013) is g#p-closed set .
(3) The intersection of an open set and g#p-open sets is a g#p-open set (Pious Missier et al., 2013).
(4) The union of any family of  g#p-open sets is a g#p-open set (Pious Missier et al., 2013).

3.On Contrα-g#p-continuous functions

In this section we introduce  the following definitions:

Definition 3.1:

A function h: A → B is called

1. Contrα- g# PRE-continuous (contrα - g#p-continuous) (Alli, 2013) if h S 	is g#p-closed set  in A,  open set S of B.
2. Strongly- g# PRE-continuous (strongly- g#p-continuous) if h S 			is open set  in A,  g#p- open set S of B.
3. Contrα  Strongly-g# PRE-continuous(contrα strongly-g#p-continuous ) if h S 	is closed set in A ,  g#p- open set S of B.
4. Contrα - g# PRE-irresolute (contrα - g#p-irresolute) if h S 	is g#p-closed set  in A,  g#p- open set S of B.

Example 3.2

1. Let A=B={1,2,3} with topologies T={A,Ø,{3}} and σ={B,Ø, {1,2}}, Let	h ∶ A → B defined by h(1)=1, h(2)=2, h(3) =3 , Since	h 1,2 = {1,2} is g#p- closed in A. Hence h is contrα -g#p-continuous.
2. Let A=B={1,2,3} with topologies T={A,Ø,{1,2}} and σ={B,Ø, {3}}, let	h ∶ A → B defined by h(1)=1, h(2) =2,h(3) =3, Since	h 3 = {3} is closed in A. Hence h is contrα strongly-g#p-continuous.
3. Let A=B={1,2,3} with topologies T={A,Ø,{1}} and σ={B,Ø,{1}}, let	h ∶ A → B	de ined	by	h(1) = 1, h(2) = 2, h(3) = 3,

Since 	h 1 = {1} is open in A. Hence h is strongly-g#p-continuous
4. Let A=B={1,2,3} with topologies T={A,Ø,{3,2}} and σ={B,Ø,{1},{2},{1,2}} . Afunction		h ∶ A → B defined by h(1)= h(2)

=h(3)=1, Clearly h is contrα -g#p-irresolute.

Theorem 3.3:

Every contrα –continuous function is  contrα -g#p-continuous
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Proof: Let B contain any open set say S , let the function h: A → B be contrα - continuous, then	h S is closed in A , since every
closed set is g#p-closed, then	h S is g#p-closed in A. Therefore h is contrα -g#p-continuous.  Not be true the converse of above
theorem , as shown in the following example:

Example 3.4:

Let A=B={1,2,3} with topologies T={A,Ø,{1},{1,2}} and σ={B,Ø,{2}}  let	h ∶ A → B defined by h(1) =1, h(2) =2, h(3) =3.
Hence h is contrα -g#p-continuous, but f is not contrα-continuous, since 	h 2 = {2} is not closed in A.

Theorem 3.5

If a function h ∶ A → B is contrα-g#p-continuous and A is TP
#- space then h is contrα continuous.

Proof: Let B contain any open set say S , Since h is contrα -g#p-continuous, Then	h S is g#p- closed in A ,Since A is TP
#-

space,  Then			h S is closed in A, Therefore h is contrα -continuous.

Theorem 3.6:

1. Every strongly-g#p-continuous is continuous.
2. Every contrα strongly-g#p-continuous is contrα -continuous.
3. Every contrα strongly-g#p-continuous is contrα - g#p-continuous.
4. Every contrα strongly-g#p-continuous is contrα - g#p-irresolute.

Proof:

1) Let B contain any open set say S, Since every open set is g#p- open, Then S is g#p- open set in B, Since h is strongly-g#p-
continuous, hence h S open in A, Therefore h is continuous.

2) Let B contain any open set say S, Since every open set is g#p- open, then S is g#p- open set in B, since h is contrα strongly-g#p-
continuous, hence h S closed in A. Therefore h is contrα -continuous.

3) The proof by theorem (3.3) is obvious.
4) By the same proof of (3) using the fact that (every closed is g#p-closed)

Not be true the converse of above theorem  in general.

Theorem 3.7:

A function h: A → B is

1. Strongly-g#p-continuous  iff for every g#p-closed set in B the inverse image is closed in A.
2. Contrα Strongly-g#p-continuous  iff  for each  g#p-closed set in B the inverse image is open in A.
3. Contrα -g#p-irresolute  iff  for each g#p-closed set in B the inverse image is g#p- open in A.
4. Contrα -g#p-irresolute  iff  for  each closed set in B the inverse image is g#p- open in A.

Proof:(1) → Let S be any g#p-closed set in B, Then B-S is g#p-open set in A Since h is strongly - g#p - continuous, Then	h B −S is open in A, Therefore		h S is closed in A. ← Let B contain any open set say S, Then B-S is closed set in B, since every
closed is g#p-closed, hence B-S is g#p-closed in B, but	h B − S = − 	h S 		is closed in A, therefore		h S is open in A.
Hence h is strongly -g#p-continuous. By the same way of (1)we can prove (2),(3)&(4).

Theorem 3. 8:

Let h : A→B is g#p-continuous  and  Z: B→C  is strongly-g#p-continuous  Z◦h : A→C  is g#p-irresolute.
Proof: Let S be a g#p-closed set in C, since Z is strongly-g#p-continuous  function, then Z 	 S is closed set in B, h -1(Z-1(S)) is
g#p-closed in A, but h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A, Therefore  Z◦h  is g#p-irresolute.

Theorem 3. 9:

Let h : A→B is contrα strongly-g#p-continuous and  Z: B→C  is g#p-continuous  Z◦h : A→C  is contrα continuous.

Proof: Let C contain any open set say S, Since Z is g#p-continuous function, Then Z 	 S is g#p-open set in B, Therefore h -1(Z-

1(S)) is closed in A, Since h is  contrα strongly-g#p-continuous, Therefore h-1(Z-1 (S))=(Z◦h)-1(S) is closed set  in A. Hence  Z◦h  is
contrα continuous.

Theorem 3. 10:

Let h : A→B is contrα -g#p-continuous  and  Z:B→C  is strongly-g#p-continuous  Z◦h : A→C  is contrα -g#p-irresolute.
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Proof: Let S be a g#p-open set in C, Since Z is strongly-g#p-continuous  function, Then Z 	 S is open set in B, Therefore h -1

(Z-1(S)) is g#p-closed in A, Since h is contrα -g#p-continuous  ,Hence  h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A. Therefore  Z◦h
is contrα g#p-irresolute.

Theorem 3. 11:

Let h: A→B  and  Z:B→C be a function

1. If Z is g#p-continuous and h is contrα g#p-irresolute then is Z◦h  is contrα g#p-continuous.
2. If Z is g#p-irresolute  and h is contrα g#p-irresolute then is Z◦h  is contrα g#p-irresolute.
3. If Z is contrα g#p-irresolute  and h is  g#p-irresolute then is Z◦h is contrα g#p-irresolute.
4. If Z is continuous  and  h is contrα g#p-continuous  then is Z◦h  is contrα g#p-continuous.
5. If Z is contrα - continuous and  h is  g#p-irresolute  then is Z◦h  is contrα g#p-continuous.

Proof:

(1) Let C contain any open set say S, Since Z is g#p-continuous function, Then Z 	 S is g#p-open set in B,Since h is contrα g#p-
irresolute, then  h -1 (Z-1(S)) is g#p- closed in A, Therefore h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A. Hence  Z◦h  is contrα
g#p-continuous.

(2) Let S be a g#p-open set in C, Since Z is g#p-irresolute function, Then Z 	 S is g#p-open set in B, Since h is contrα -g#p-
irresolute, Therefore  h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A. Hence  Z◦h  is contrα g#p-irresolute.

(3) Let S be a g#p-open set in C, Since Z is contrα - g#p-irresolute function, then Z 	 S is g#p-closed set in B,  Since h is g#p-
irresolute, Therefore  h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set in A. Hence Z◦h is contrα -g#p-irresolute.

(4) Let C contain any open set say S, Since Z is continuous function, Then Z 	 S is open set in B, Since h is contrα -g#p-
continuous, Then h -1(Z-1 (S))=(Z◦h)-1 (S) is g#p-closed set  in A. Hence  Z◦h  is contrα- g#p-continuous.

(5) Let C contain any open set say S, then S is g#p-open . Since Z is g#p-irresolute function, then Z 	 S is g#p-open set in B,By
theorem (3.3) h is contrα -g#p-continuous ,therefore h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A. Hence  Z◦h  is contrα g#p-
continuous.

4-Almost contrα- g#p- continuous functions

In this section, we introduce and study basic properties of a new  continuity   called almost contrα- g#p- continuous.

Definition 4.1:

A function h: A → B is called Almost contrα - g# PRE-continuous (almost contrα - g#p-continuous) if h S 	is g#p-closed set  in
A for each S of B where S be regular open set.

Remark 4.2:

Every contrα - g#p-continuous is almost  contrα - g#p-continuous (Since every regular open set is open)

Not be true the converse of remark  above as shown in the following  example:

Example 4.3:

Let A=B={1,2,3} with topologies T={A,Ø,{1},{1,2},{1,3}} and σ={B,Ø , {1},{1,2}}, let	h ∶ A → B defined by h(1) =1, h(2) =2,
h(3) =3,Clearly h is almost contrα -g#p-continuous ,But h is not contrα - g#p -continuous.

Definition 4.4:

A space (A,T) is called locally g#p- indiscrete if every g#p-closed  set is open.

Theorem 4.5:

If a function h ∶ A → B is almost contrα -g#p- continuous and (A,T) is locally g#p- indiscrete then h is almost -continuous.

Proof: Let B contain regular open set say S, Since h  is almost contrα -g#p- continuous, Then 	h S is g#p- closed set in A, Since
A is g#p-locally indiscrete, Then		h S is open set in A. Therefore h is almost-continuous.

Theorem 4. 6:

If a function	h ∶ A → B is an almost contrα -g#p-continuous, Then h 	 S 	is g#p-open  set  in A,  regular closed  set S in B.
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Proof: Let B contain regular closed set say S, Then B-S is regular open, Since h is almost contrα -g#p-continuous, then	h B −S) = A − h ( is g#p-closed set  in A. So h 	 S is g#p-open  set  in A.
Theorem 4. 7:

If  a function h ∶ A → B is an almost contrα -g#p-continuous function and C subset of A,C is an open set, Then the restriction
h \ C :C→B  is also almost contrα - g#p-continuous.

Proof: Let S be a regular closed set in B, Since h is almost contrα - g#p-continuous function, hence h 	 S is g#p-open  set  in A,
since C is open, By remark (2,4(3))  hence ( h \ C )-1 (S) = C ∩ h -1(S)  is		h 	 S is g#p-open  set  in C. Therefore h\C is an almost
contrα-g#p-continuous.

Theorem 4. 8:

Let h : A→B is almost contrα -g#p-continuous  and  g:B→C  is almost-continuous then Z◦h : A→C  is almost contrα -g#p-
continuous.

Proof: Let C contain regular open set say S, Since Z is almost-continuous function,  Hence Z 	 S is open  set  in B, Since h
almost contrα -g#p-continuous  h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A. Therefore  Z◦h  is almost contrα -g#p-continuous.

Theorem 4. 9:

Let h : A→B is almost contrα -g#p-continuous  and  Z:B→C  is perfectly continuous, then Z◦h : A→C  is  contrα -g#p-continuous.

Proof: Let C contain open set say S, Since Z is perfectly continuous function, Then Z 	 S is clopen (open and closed)  set  in B,
Since h  almost contrα -g#p-continuous      h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A. Therefore  Z◦h  is contrα -g#p-continuous.

Theorem 4. 10:

Let h : A→B is almost contrα -g#p-continuous  and  Z:B→C  is an R-map  then Z◦h : A→C  is almost contrα -g#p-continuous.

Proof: Let C contain regular open set say S , Since Z is an R-map, then Z 	 S is regular open  set  in B,  Since h  almost contrα
-g#p-continuous  function, Hence  h -1(Z-1(S))=(Z◦h)-1(S) is g#p-closed set  in A. Therefore  Z◦h  is almost contrα -g#p-continuous.
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