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INTRODUCTION 
 
Leguminous plants according to their quantitative and 
qualitative composition (Tsoata et al., 2015a
significant way to animal and human nutrition everywhere in 
the world (Shao et al., 2009; Akédrin et al., 
2012); especially in Latin America and Africa 
2016). Furthermore, they are multipurpose plants; 
multiple functions were highlight in many works 
al., 2010; Bertrand, 2009; Hindumathi and Reddy, 
Jensen et al., 2012; El Sohaimy, 2012; 
Mirmiran, 2015). It’s because of the huge importance of 
leguminous plants in society that UNO in its sixty
general assembled proclaimed 2016 international year of 
leguminous plants, in order to sensitize on: many advantages 
which they offer, to stimulate their produ
commercialization and to encourage new intelligent uses along 
the food chain (Anonyme, 2013). But production of 
leguminous plants is limited mainly by biotic and abiotic 
(Ceccarelli, 2010). Among abiotic stresses, water stress is most 
complex and devastator on a total scale (Pennisi, 2008; Zhang 
et al., 2011) and its frequency should increase as consequence 
of climatic change (Ceccarelli, 2010). Water stress can be 
defined as a situation in which water potential of plant and cell 
turgidity are reduced enough at the  
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ABSTRACT 

Early biochemical criterion of four Fabaceae leguminous plants, were studied, in glasshouse, under 
water stress condition, in pots on a substrate made up of ¾ of ground and ¼ of sand, with seedlings 
having two three leaflets leaves.  Experimental design was a factorial arranged in 
randomized block with: four species (Cajanus cajan, Phaseolus lunatus, Tephrosia vogelii and Vigna 
subterranea), four watering levels: 90 (blank), 60, 30 and 15% of field capacity, replicated five times. 
Various parameters measured after 15 days of water stress, are 
carotenoids, proline, total amino acids, total soluble proteins and total soluble sugars. 
obtained for studied parameters show that water stress differently modifies metabolism of plants 
according to genotype. Proline content and total soluble sugars content can be used like early 
indicators and relevant criteria of tolerance to drought, usable in varietal selection and like parameters 
of improvement of yield in arid areas. 
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interface with normal functions 
appear in form of rains stop at the middle of vegetative cycle, 
rains ceasing very early or occurring tardily, or weak 
precipitations (Katungi et al., 2010
induce yield loss of 32 to 60 % 
adapt by modifying various biochemical processes to adjust 
them self with stressing environment 
Tsoata et al., 2016b). Many authors showed that,
water constraint involves biochemical effects in which proteins, 
sugars, are implied, among other products 
Tsoata et al., 2016b). To mitigate water stress, farmers use 
several methods among which, culture of tolerant species
varieties, or use of local varieties having a weak yield 
al., 2011).  However research finding that can be used to create 
elites genotypes adapted to local conditions or not very 
sensitive to water stress are scare.
necessary and urgent to intensify research tasks clarifying the 
features of adaptation, or tolerance to water stress for 
leguminous plants in particular and plants in general. 
context that we studied in glasshouse eff
biochemical parameters of four Fabaceae leguminous plants, in 
order to positively contribute to comprehension of behavior of 
those plants under water stress.
 

MATERIALS AND METHODS 
 
Very young seedlings resulting from germination of healthy 
and disinfected seeds of each species are developed in plastic 
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interface with normal functions (Shao et al., 2008). It can 
appear in form of rains stop at the middle of vegetative cycle, 
rains ceasing very early or occurring tardily, or weak 

., 2010).  Water stress can thus 
induce yield loss of 32 to 60 % (Katungi et al., 2010). Plants 
adapt by modifying various biochemical processes to adjust 
them self with stressing environment (Bohnert et al., 1995; 

Many authors showed that, in plants, 
water constraint involves biochemical effects in which proteins, 
sugars, are implied, among other products (Shao et al., 2008; 

To mitigate water stress, farmers use 
several methods among which, culture of tolerant species or 
varieties, or use of local varieties having a weak yield (Abate et 

However research finding that can be used to create 
elites genotypes adapted to local conditions or not very 
sensitive to water stress are scare. For these reasons it is 
necessary and urgent to intensify research tasks clarifying the 
features of adaptation, or tolerance to water stress for 
leguminous plants in particular and plants in general. It’s in this 
context that we studied in glasshouse effects of water stress on 
biochemical parameters of four Fabaceae leguminous plants, in 
order to positively contribute to comprehension of behavior of 
those plants under water stress. 

MATERIALS AND METHODS  

Very young seedlings resulting from germination of healthy 
and disinfected seeds of each species are developed in plastic 
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containers on river sand regularly humidified until the stage 
two three leaflets leaves. Then transferred in plastic pots of  3 
L containing a substrate made up of ground ¾ and sand ¼ and  
various levels of water stress are applied. The experimental 
design is a randomized factorial with: 4 leguminous plants          
(C. cajan, P. lunatus, T. vogelii and V. subterranea); 4 levels 
of watering: 90(blank), 60, 30 and 15 % of  field capacity; that 
is to say 900, 600, 300 and 150 ml of water for 2,4 kg of dry 
substrate; five replications. After water stress period of 15 
days, following biochemical parameters were recorded: 
content chlorophyll a+b, carotenoids, proline, total amino 
acids, total soluble proteins and total soluble sugars (Tsoata et 
al., 2016b).   
 
Data analysis 
 
Data collected for various parameters are subjected to analysis 
of variance (ANOVA), to Student Newman-Keuls and Duncan  
test at  5 %  level of significance for comparison of means, 
thanks to software SAS or SPSS 18.0. The software Microsoft 
Excel 2007 is used for graph (Tsoata et al., 2016b).   
 
Leaves pigments content   

 
Leaves pigments are extracted and proportioned according to 
(Lichtenthaler and et Buschmann, 2001; Tsoata et al., 2015c).   
 
Total amino acids and proline    
 
Total amino acids and proline are determined by ninhydrine 
reaction according to (Yemm and et Cocking, 1955; Tsoata           
et al., 2015a).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Total soluble proteins    
 
Extraction of soluble proteins was made by crushing of 0.5 g of 
fresh leaves in a mortar  in presence of 5 ml of tris-HCl 0.4 M 
(pH = 6.8) buffer, containing 1.5 M NaCl followed by 
centrifugation at 5000 rpm at 4 °C during 10 mn (Tsoata           
et al., 2015a). The supernatant was recovered and the titration 
of proteins done by the colorimetric method of (Bradford, 
1976; Tsoata et al., 2015a).   

Total soluble sugars    
 
The titration of total sugars was carried out according to 
anthrone method (Yemm and Willis, 1954; Tsoata et al., 
2015a).   

 
RESULTS   
 
Content of chlorophyll a+b and carotenoids   
 
For chlorophyll a+b content, no significant difference is 
observed for all treatments (T1, T2 and T3) for P.  lunatus,            
V. subterranea and T.  vogelii. But for C. cajan, a significant 
reduction (p < 0.05)  in Chlorophyll a+b content is recorded, 
this reduction is 1.15 mg.g-1 DW for T1 and 1.08 mg.g-1 DW 
for T2 compared to T0. There is no significant difference 
between Chlorophyll a+b content of T1 (0.91 mg.g-1 DW) and 
that of T2 (0.99 mg.g-1 DW). For the studied leguminous 
plants, carotenoids content and chlorophyll a / chlorophyll b 
(Chl. a/Chl. b) (Table 1) exhibit no significant difference for 
all treatments (T1, T2 and T3) compared to T0. 
 
Proline and total amino acids   
 
For P.  lunatus, proline content is relatively constant whatever 
the level of stress (Fig. 1). For V. subterranea, proline increase 
is significant (p < 0.05) only for T3 (0.83 µg.g-1 DW). In C.  
cajan, significantly increment is observed for T2 (0.39 µg.g-1 
DW) and T3 (1.39 µg.g-1 DW).  Tephrosia vogelii, shows 
significant increase (p < 0.05) of proline content for all levels 
of water stress. For T3 (drastic stress), proline content 
increases considerably in leaves: 4 times (275 %) for C.  cajan,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5 times (357 %) for V.  subterranea and 6 times (524 %) for T.  
vogelii.  The total amino acid content (TAA) of leaves varies 
under water stress for four studied leguminous plants 
compared to T0 (Table 2). For C. cajan, water stress didn’t 
induce any significant variation of TAA content for T1; in T2, 
this content drops by 38.00 % before increasing by 30.42 % for 
T3. In P. lunatus, this content increases significantly (p < 0.05) 
compared to T0 for stressed plants. Tephrosia vogelii                
TAA content decreases in T1 and T2; with T3, it increases  

 
 

Fig.1. Effect of water stress on proline accumulation 
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significantly (p < 0.05) by 173.85 %. For V. subterranea, this 
content decreases significantly by 40.29 % for T1; for T2 and 
T3, there is no significant difference. Compared to T0, TAA 
content is higher in T3 for C. cajan, P. lunatus and T. vogelii.  
Tephrosia vogelii and C. cajan accumulate more TAA than 2 
other leguminous plants.  
 
Total soluble proteins   
 
A great variability is observed on accumulation of total soluble 
proteins (TSP) for four studied leguminous plants compared to 
T0 (Table 3). For C. cajan, TSP content increases significantly 
(p < 0.05) by 1.67 µg.g-1 DW for T1; with T2 and T3, this 
content decreases significantly by 1.50 µg.g-1 DW and 1.64 
µg.g-1 DW respectively. In P. lunatus, TSP content increases 
by 0.39 µg.g-1 DW with T1, before dropping of 0.68 µg.g-1 
DW at T3,compared to T0. For T. vogelii, a significant 
reduction (p < 0.05) in this content is recorded, 3.31 µg.g-1 DW 
at T1, of 3.36 µg.g-1 DWF in T2 and  1.51 µg.g-1 DW in T3, 
compared to T0. In V. subterranea, there is no significant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
difference between TSP accumulated for T1 and T3; for T2 a 
significant increase (p < 0.05) of 1.64 µg.g-1 DW is observed, 
compared to T0.   
 
Total soluble sugar: The increase in water stress levels 
doesn’t influences accumulation of total soluble sugars (TSS) 
for C. cajan (Table 4).  This content increases with increase of 
water stress level in P. lunatus; the highest accumulation of 
TSS is observed with T3 (5.69 mg.g-1 DW). In T. vogelii, 
reduction in TSS content is noticed when level of water stress 
increased; for T1, reduction is not significant; but significant 
9.91 mg.g-1 DW for T2 and 10.81 mg.g-1 DW for T3, 
compared to T0. In Vigna subterranea, a significant (p < 0.05) 
increase of TSS content is noticed, 2.56 mg.g-1 DW for T1, 
5.65 mg.g-1 DW for T2 and 0.58 mg.g-1 DW for T3.   
 

DISCUSSION  
 
Photosynthetic pigments are essential for production of plants 
organic nutriments and life of plants cells depends on 

Table 1. Chlorophyll and carotenoïd content 
 

Treatments 
 
Parameters                     Species 

T0 (90%FC) T1 (60 %FC) T2 (30 %FC) T3 (15%FC) 

 
 
Chlorophyll  a+b  

C. cajan 2.06 ± 2.49 a 0.91 ± 0.03 ab 0.99 ± 0.15 ab nd 
P. lunatus 0.60 ± 0.02 ab 0.81 ± 0.02 ab 0.84 ± 0.03 ab 0.78±0.04 ab 
T. vogelii 0.64 ± 0.02 ab 0.31 ± 0.02 ab 0.24 ± 0.12 ab nd 
V. subterranea 0.40 ± 0.02 ab 0.50 ± 0.06 ab 0.56 ± 0.08 ab 0.97± 0.04 ab 

 
Chl. a/Chl. b  

C. cajan 0.22 ± 1.33 a 0.87 ± 0.09 a 0.92 ± 0.34 a nd 
P. lunatus 0.89 ± 0.01 a 1.18 ± 0.24 a 1.36 ± 0.41 a 2.29 ± 1.91 a 
T. vogelii 1.68 ± 1.97 a 0.93 ± 0.13 a 0.68 ± 0.12 a nd 
V. subterranea 0.73 ± 0.20 a 0.87 ± 0.38 a 0.57 ± 0.34 a 0.95 ± 0.08 a 

 
 
Carotenoïds  

C. cajan 0.63 ± 1.05 a 0.00 ± 0.01 a 0.01 ± 0.06 a nd 
P. lunatus 0.02 ± 0.01 a 0.05 ± 0.01 a 0.06 ± 0.01 a 0.08 ± 0.05 a 
T. vogelii 0.01 ± 0.09 a 0.02 ± 0.01 a 0.00 ± 0.07 a nd 
V. subterranea 0.02 ± 0.01 a 0.00 ± 0.02 a 0.02 ± 0.03 a 0.02 ± 0.02 a 

        Values follow by same letter on one line are not significant at p < 0.05 % 

 
Table 2. Total amino acid content of leaves 

  
    Treatments                 
Species 

T0 (90 % FC) T1 (60 % FC) T2 (30 % FC) T3 (15 % FC) 

C. cajan 554.00 ±35.63bcd 516.33 ±39.73 bcd 343.50 ± 32.45 de 722.50 ± 6.61 b 
P. lunatus 429.67 ± 43.77 cd 561.50 ±150.70 bcd 522.67 ± 31.48 bcd 539.17± 118.68bcd 
T. vogelii 581.33 ± 80.51 bc 535.00 ±119.48 bcd 476.33± 182.85 cd 1592.00 ± 107.39 a 
V. subterranea 213.83 ± 42.56 ef 127.67 ± 21.73 f 224.50 ± 44.25 ef 179.33 ± 44.89 ef 

              Values follow by same letter on one line are not significant at p < 0.05 % 

 
Table 3. Total soluble protein content 

 
       Treatments 

   
 
Species 

T0 (90 % FC) T1 (60 % FC) T2 (30 % FC) T3 (15 % FC) 

C. cajan 3.12 ± 0.13 f 4.73 ± 0.35 e 1.62 ± 0.71 g 1.47 ± 0.61 g 
P. lunatus 6.88 ± 0.31 cd 7.28 ± 0.32 c 6.93 ± 0.57 cd 6.20 ± 0.28 d 
T. vogelii 8.54 ± 0.13 b 5.23 ± 0.21 e 5.18 ± 0.57 e 7.03 ± 0.43 cd 
V. subterranea 8.50 ± 0.39 b 8.46 ± 0.42 b 10.14 ± 0.45 a 9.33 ± 0.47 b 

               Values follow by same letter on one line are not significant at p < 0.05 % 

 
Table 4. Total soluble sugars content 

 
      Treatments 
Species 

T0 (90 % FC) T1 (60 % FC) T2 (30 % FC) T3 (15 % FC) 

C. cajan 1.46 ± 0.08 de 1.48  ± 0.12 de 1.69 ± 0.32 de 1.44 ± 0.34 de 
P. lunatus 0.75 ± 0.08 e 1.71 ± 0.11 de 2.21 ± 0.25 de 5.69 ± 0.22 c 
T. vogelii 13.67 ± 1.35 a 13.18 ± 3.64 a 3.76 ± 0.17 cd 2.86 ± 0.14 de 
V. subterranea 2.96 ± 0.17 de 5.53 ± 0.36 c 8.61 ± 0.11 b 3.54 ± 0.63 cd 

             Values follow by same letter on one line are not significant at p < 0.05 % 
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photosynthetic activity (Bezerra et al., 2008).  Their amount in 
plants is often correlated with the impact of several 
environmental stresses, because their quantity is related to 
stress visual symptoms and to plant photosynthetic productivity 
(Jain et al., 2013). Water stress modifies photosynthetic 
pigments and their composition, Anjun et al. (2003), Farooq et 
al. (2009) report a chlorophyll reduction in water stressed 
plants. Chlorophylls, carotenoids and ratio chl. a /chl. b of 
leaves, are good indicators for stress detection and plants 
tolerance to stress (Chakhchar, 2015). Results of this 
experiment show that compared to control, water stress didn’t 
induce significant variation of foliar pigment and ratio chl. a 
/chl. b, except C. cajan for chl. a+b. These results do not 
corroborate those of: Yadav et al. (2013) on V. mungo;  
Allahverdiyev (Allahverdiyev, 2015)) on durum wheat; Tsoata 
et al. (2015c) on voandzou, and suggest that for P. lunatus, V. 
subterranea and T. vogelii, under conditions of this 
experimentation, water stress, at this development stage, 
doesn’t affect leaves pigments. This result is similar to those of 
Mabbaudhi et al. (2013) on V. subterranea, reporting that, 
chlorophyll content was not sensitive to water stress. 
Development stage of plants subjected to water stress would 
have an influence on chlorophylls and carotenoids amount in 
leaves tissue. Content of chlorophyll, carotenoids and ratio Chl. 
a /chl. b, would thus not be early indicators of tolerance to 
water stress for these three species. Quantity of leaves 
chlorophyll can be influenced by factors such as leaf age, 
position and environmental factors: light, temperature and 
availability of water (Hikosaka et al., 2006).  The decrease of 
chl. a+b observed for C. cajan corroborates results of Anjun et 
al. (2003) on barley; Atti et al. (2004) on Glycine max, 
Mekliche (2003) on durum wheat; Kiani et al. (2008) on 
sunflower. The decrement of chlorophyll content is the 
consequence of reduction of stomata opening aiming at limiting 
water losses by transpiration and increase in resistance to entry 
of atmospheric CO2 necessary to photosynthesis (Bousba et al., 
2009). Closing of stomata, with time lowers CO2 absorption as 
well as photosynthesis and consequently reduced chlorophyll 
content of stressed plants (Makakheri et al., 2010). This 
decrease of pigments content could also be due to very weak 
biosynthesis following drop of activity of glutamate synthetase, 
enzyme implied in biosynthesis of glutamate, which is 
precursor of photosynthetic pigments (Tahri El Houssine et al., 
1998). Moreover, the decrement could be due to fast 
decomposition of chlorophyll, as well as to modifications of 
structure of thylakoïdal membrane (Bacelar et al., 2006). 
Results on photosynthetic pigments emphasize variability 
existing between studied leguminous plant species with regard 
to their response to water stress.  
 
Accumulation of proline is a significant indicator of plants 
tolerance to drought. Several authors show that increase in 
content of proline is directly related to application of water 
stress (Mekliche et al., 2003; Cechin et al., 2006). Increase in 
proline would be a protective response of plants to all factors 
which involve a water reduction in cytoplasm. An increase in 
proline content in parallel with severity of water stress is noted 
for three studied leguminous plants. This result corroborates 
those of many works reporting an increase in    proline content 
to a significant degree for many species and in various 
situations of stress (osmotic, water, thermal): olive-tree (Sofo et 
al., 2004; Boughallleb and Mhamdi, 2011);   poplar (Yin et al., 
2005); rice (Choudhary et al., 2005; Mostajeran and Rahimi-
Eichi, 2009); voandzou (Tsoata et al., 2015a). Proline thus 
accumulated, as compatible inert osmolyte would play several 

roles in stressed plant: protection of subcellular structures, 
membranes and proteins (Kavi-Kishor et al., 2005; Ashraf and 
Foolad, 2007); elimination of free radicals, reactive oxygen 
species and neutralization of singulet oxygen (Okuma et al., 
2004; Chen et al., 2006; Matysik et al., 2002);  improvement of 
activity of several enzymes and would act as antioxidant 
(Matysik et al., 2002; Szabados and Savoure, 2009). Proline 
can confer stress tolerance to plants by development of an 
antioxidant system which can play a role of indicator of 
osmotic adjustment (Eliane et al., 2007). This type of 
adaptation allows plants to perform its normal physiological 
functions in spite of degradation of its intern water state caused 
by drought. Plants which accumulate most proline are regarded 
as most stress tolerant. Thus T. vogelii and C. cajan would be 
more tolerant to water stress than V. subterranea. Proline 
quantity didn’t vary significantly for P. lunatus under water 
stress; this result doesn’t corroborate those of Tsoata et al. 
(2015a) on voandzou;  Sofo et al. (2004) on olive tree, 
Mostajeran (2009), Boughalllds and Mhamdi (2011) on rice. It 
suggests that P. lunatus under osmotic stress would use 
mechanisms where little proline is needed, for protection 
against factors lessening cytoplasm water. The accumulation of 
proline however varies according to plant and even variety as 
we observed for studied species; this is in agreement with 
Sithole and Modi (2015) results. For some plants, like: V. 
sbterranea, C. cajan and T. vogelii proline  plays major role in 
osmotic adjustment, whereas for others it represents only weak 
part of total active osmolytes, that is the case for tomato 
Claussen (2005) and P. lunatus in this work.     
 
Several authors report changes in expression, accumulation and 
synthesis of proteins for several water stressed plants species 
during growth phase (Chen and Tabaeizadeh, 1992; Cheng et 
al., 1993; Sithole and Modi, 2015). Quantitative and qualitative 
proteins modifications were observed during drought (Riccardi 
et al., 1998).  Researchers, by measuring quantity of TSP 
according to water deficit showed that it can decrease (Hsiao, 
1973; Zerrad et al., 2008) or increase (Zerrad et al., 2008).  
Proteins synthesized in response to drought are implied in the 
response of plant to water scarcity (Riccardi et al., 1998) and in 
physiological adaptation to water starvation (Riccardi et al., 
1998; Bray, 1993; Han and Kermode, 1996); they are called 
dehydrines (dehydration induced) (Close and Chandler, 1990). 
Results of this experiment emphasize TSP decrease for C. 
cajan, P. lunatus and T. vogelii under water stress. This result 
doesn’t corroborate those of Riccardi et al. (1998) on corn, 
Sithole and Modi (2015) on Lagenaria siceraria and can be 
due to a severe reduction in photosynthesis under water stress. 
Indeed decrement of photosynthesis reduces among of 
compounds necessary to proteogenesis and consequently 
proteins synthesis decreases and can even stop (Havaux et al., 
1987). In general, water stressed plants always show deficiency 
in nitrogenize nutriments, leading to an inhibition of proteins 
synthesis (Javed et al., 2013). Reduction of quantity of soluble 
proteins can also be due to the process of proteolysis under 
water stress (Munns, 2002), which leads to increase in soluble 
amino acids (Javed et al., 2013). For V. subterranea, significant 
increase in TSP content at T2, was already observed on corn 
(Riccardi et al., 1998) and on wheat (Hamid et al., 2010). This 
increment could be due to expression of stress proteins 
allowing plant to adapt to unfavorable environmental 
conditions (Javed et al., 2013).  
 
Increase and reduction of TSP under water stress, corroborate 
results of:  Riccardi et al. (1998), Ti-da et al. (2006) on corn; 
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Bensen et al. (1988) on Glycine max. These authors report that 
drought increases synthesis of some proteins and decreases 
those of others. During water stress, leaves increase their 
content of low molecular weight soluble proteins more than 
that of high molecular weight proteins (Farshadfar et al., 2008).  
Actually it’s well known that proteins accumulated under water 
stress in plants fill up additional energy requirements in 
response to environmental stress and are useful like antioxidant 
enzymes. Furthermore they would intervene in stabilization of 
membrane proteins and osmotic adjustment (Close, 1996; 
Carpenter and Crowe, 1988), in the protection of cells against 
dehydration stress (Close and Chandler, 1990) and ensure 
sequestration of ions under water stress as well as the control of 
concentration of dissolved substances in cytoplasm. Amino 
acids (AA), first products of assimilation of nitrogen gas, are 
essential for proteins and nucleic acids synthesis (Shao et al., 
2009). Reduction in content of TAA observed in this work has 
been already reported by Zerrad et al. (2008) on durum wheat 
and would be due to denaturation of proteins sensitive to 
dehydration following reduction of moisture in the pots of 
stressed plants. The increase of TAA content corroborates 
results of Hsu and Kao (2003) on Oryza sativa. Their 
accumulation reduces osmotic potential, thus facilitating entry 
of water in plant (Iqbal et al., 2011). They are used to 
manufacture proteins and other essential molecules to growth 
(Ashraf et al., 1996). Because of irregularity in progression of 
accumulation of AA and TSP with increasing water stress 
level, these two parameters would not be early indicators of 
tolerance to water stress. The significant increase in TSS 
content for water stressed plants constitutes an adaptive 
mechanism to stress (Javed et al., 2013). Soluble sugars are 
osmolytes providing a double function: equilibration of 
osmotic adjustment and osmoprotectants of proteins under 
water stress (Ashraf and Harris, 2003; Iqbal et al., 2011), thus 
reducing aggregation of denatured proteins (Ashraf and Harris, 
2003). Stressed plants of P. lunatus and V. subterranea reacted 
by increase in TSS quantities of their cells in parallel with rise 
in water stress level. This result is similar to those of several 
researchers on durum wheat (Mekliche et al., 2003); on 
safflower (Mouellef, 2010; Javed et al., 2013). Accumulation 
of soluble sugars is a means adopted by plants in case of stress, 
to tolerate environmental constraints (Loretti et al., 2001); this 
accumulation allows maintenance of high cellular integrity 
(Loretti, 1993).  
 
Soluble sugars (glucose, galactose, saccharose and fructose) are 
indicators of level of stress, because of their significant 
increase for a severe water stress, these sugars allow tolerance 
to various stresses (Zerrad et al., 2008). Soluble sugars protect 
membranes against dehydration under water stress condition 
and contribute in lowering of the osmotic potential. 
Accumulated sugars would originate from hydrolysis of 
polysaccharides under condition where water is scare (Clifford 
et al., 1998), allowing stressed plants to make osmotic 
adjustment. For C. cajan soluble sugars among doesn’t vary 
significantly, but decreases for T. vogelii when the level of 
stress rises; suggesting thus that for these two species, soluble 
sugars would not have priority in osmotic adjustment under 
water stress. Total soluble sugars content lessen for T. vogelii 
and V. subterranea for T3.  Generally under water stress, TSS 
content can remain constant for severe stress or increase for a 
moderate stress, because decrease in carbon assimilation, slows 
down also growth and export of photosynthesis compounds 
(Chaves and Oliveira, 2004). Under severe water stress soluble 
sugar content could lessen (Pinheiro et al., 2001). 

Conclusion      
 
Objective of this work was to analyze early biochemical 
indicators for tolerance to water stress of four Fabaceae 
leguminous plants.  Results obtained for content of leaves 
pigments, proline, TAA, TSP and TSS allow concluding that 
water stress differently modifies metabolism of plants 
according to genotype.  Contents of proline and TSS can be 
used like early indicators and relevant criteria of tolerance to 
drought usable in varietal selection and like parameters of 
improvement of yield in arid areas. 
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