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INTRODUCTION 
 
In industry, agriculture, engineering and technology, physics 
and so on, in the natural sciences, we often used 
(The pure literal rule and polynomial average time.
Sherwin et al., 2003; Matthieu Martel et al.1998
2001; Dutertre, 2006; Cowen, 1993). So called linear algebra, 
is a vector space on the field K (Yunhai, 2002; 
languages and Turing machine computations
almost the foundation of all algebraic system, vector space and 
the algebraic system in various natural science has the 
extremely widespread application (Ferrer et al., 
and Sadeg, 2005; Gilman et al., 1987; Matthieu Martel
Bolis et al., 2009). In this article, we collected a large number 
of data, describes how to the linear algebra to the 
transformation of the matrix, and its many kinds of algorithms, 
and even some algorithm program is presented.
 
Generalities on linear algebra algorithms 
 
Let K be a field. Linear algebra over K is the study of 
space and K linear maps between them. We will always 
assume that the vector space that we use are finite
(Liu et al., 2015). Of course infinite-dimensional vector spaces 
arise naturally, for example the space K[X] of polynomials in 
one variable over K. Usually however when one needs to 
perform linear algebra on these spaces it is almost always on 
finite-dimensional subspaces.  
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assume that the vector space that we use are finite-dimensional 
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As we know, K-vector space 
practice we will assume that V 

independent vectors 
1 2, , ,v v v

greater or equal, but not necessarily equal to 
course highly non-canonical, but we can always reduce to that 
situation. Since Km has by definition a canonical basis, we can 
consider V as being given by an 
matrix with m rows and n columns, such that the columns of 
M(V) represent the coordinates in the canonical basis of 

the vectors iv . If n=m the linear independence of the 

means of course that M(V) is m invertible matrix, where the 
notation M(V) is slightly improper since 

to the vector space V,  but to the chosen basis 

 
Linear algebra transformed into a matrix
 
We note that changing bases in 
M(V) on the right by an invertible 
we may want matrix M(V) to satisfy certain properties, for 
example being in upper triangular form. A liner map 
two vector space V and W of respective dimensions 
will in practice be represented by an 
being the matrix of the map f 
and M(W) of V and W respectively. In other words, the 

column of M(f) represents the coordinates of 

is iw  where the jv  correspond to the columns of 

the iw  to the columns of M(W

column-representation of vectors and not row
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 V is an abstract object, but in 
V is given by a basis of n linearly 

, , , nv v v  in some Km, where m is 

r equal, but not necessarily equal to n. This is of 
canonical, but we can always reduce to that 
has by definition a canonical basis, we can 

as being given by an m n  matrix M(V), i.e. a 
columns, such that the columns of 

) represent the coordinates in the canonical basis of Km of 

the linear independence of the iv  

) is m invertible matrix, where the 
) is slightly improper since M(V) is attached, not 

,  but to the chosen basis iv . 

Linear algebra transformed into a matrix 

We note that changing bases in V is equivalent to multiplying 
) on the right by an invertible n n  matrix. In particular, 

) to satisfy certain properties, for 
example being in upper triangular form. A liner map f between 

of respective dimensions n and m 
will in practice be represented by an m n  matrix M(f), M(f) 

f with respect to the bases M(V) 
respectively. In other words, the j-th 

) represents the coordinates of f( iv ) in the basis 

correspond to the columns of M(V) and 

W). Note that in the above we use 

representation of vectors and not row-representation, 
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this is quite arbitrary but corresponds to traditional usage. 
Once a choice is made however one must consistently stick 
with it. Thus the objects with which we will have to work with 
in performing linear algebra operations are matrices and (row 
or column) vectors. This is only for practical purposes, but we 
keep in mind that it rarely corresponds to anything canonical. 
The internal representation of vectors is completely 
straightforward, i.e. as a linear array. For matrices essentially 
three equivalent kinds of representation are possible. The 
particular one which should be chosen depends on the 
language in which the algorithms will be implemented. For 
example it will not be the same in Fortran and in C. 
 
Lattlces algorithms for linear algebra  
 
We have seen that one representation is to consider matrices as 
(row) vectors of (column) vectors. In fact, we could also 
consider them as column vectors of row vectors but the former 
is preferable since we have chosen to represent vectors mainly 
in column-representation. A second method is to represent 
matrices as two-dimensional arrays. Finally, we can also 
represent matrices as one-dimensional arrays, by adding 
suitable macro-definitions so as to be able to access individual 
elements by row and column indices. Whatever representation 
is chosen, we must also choose the index numbering for rows 
and columns. Although many languages such as C take 0 the 
starting index for consistency with usual mathematical notation 
we will assume that the first index for vectors or for rows and 
columns of matrices is always taken to be equal to 1. This is 
not meant to suggest that one should use this in a particular 
implementation, it is simply for elegance of exposition. In any 
given implementation, it may be preferable to make the 
necessary trivial changes to use 0 as the starting index.  Again, 
this is a language dependent issue. 
 
Gaussian elimination and solving linear systems   
 
In linear algebra algorithms the basic operation which is used 
is that of Gaussian elimination, sometimes also known 
Gaussian pivoting. This consists in replacing a column (resp. a 
row) C by some linear combination of all the columns (resp. 
rows), where the coefficient of C must be non-zero, so that (for 
example) some coefficient becomes equal to zero. Another 
operation is that of exchanging two columns (resp. rows). 
Together these two basic types of operations (which we will 
call elementary operations on columns or rows) will allow us 
to perform al1 the tasks that we will need in linear algebra.  
Note that they do not change the vector space spanned by the 
columns (resp. rows). Also, in matrix terms performing a series 
of elementary operations on columns (resp. rows) is equivalent 
to right (resp. left)multiplication by an invertible square matrix 
of the appropriate size. Conversely, one can show that an 
invertible square matrix is equal to a product of matrices 
corresponding to elementary operations. The linear algebra 
algorithms that we give are simply adaptations of these basic 
principles to the specific problems that we must solve, but the 
underlying strategy is always the same, i.e. reduce a matrix to 
some simpler form (i.e. with many zeros at suitable places) so 
that the problem can be solved very simply. The proofs of the 
algorithms are usual1y completely straightforward, hence will 
be given only when really necessary. We will systematically 
use the following notation: M is a matrix, 

jM  denotes its j-th 

column '
iM  its i-th row and 

,i jm  the entry at row i and column j. 

If B is a (column or row) vector, 
ib  will denote its i-th 

coordinate. Perhaps the best way to see Gaussian elimination 
in action is in solving square linear systems of equations. 
 
Algorithm 1. (Square Linear System) 
 
Let M be an n n  matrix and B a column vector. This 
algorithm either outputs a message saying that M is not 
invertible or outputs a column vector X such that MX=B. We 
use an auxiliary column vector C. 
 
1. [lnitialize] Set 0j  . 

 

2. [Finished?] Let 1j j  . If j n  go to step 6. 

 

3. [Find non-zero entry] If 
, 0i jm   for all i j , output a 

message saying that M is not invertible and terminate the 

algorithm. Otherwise, let i j  be some index such that 

, 0i jm  . 

 

4.[Swap?] If i j  for , ,l j n   exchange ,i lm  and ,j lm  

and exchange ib  and jb . 

 

5.[Eliminate] (Here , 0j jm  .)  Set 
1
,j jd m  and for all 

k j set ,k k jc dm . Then, for all k j  and l j  set 

(Note that we donot neèd to compute this  for l j  since' it is 

equal to zero.)  Finally for k j  set k k k jb b c b   and 

go to step 2. 
 
6. [Solve triangular system] (Here M is an upper triangular 

matrix.) For , 1, ,1i n n    (in that order) set 

, ,( ) /i i i j j i i
i j n

x b m x m
 

    output 
1( )i i nX x    and terminate 

the algorithm. 
 
Note that steps 4 and 5 (the swap and elimination operations) 
are really row operations, but we have written them as working 
on entries since it is not necessary to take into account the first 
j-1 columns. Note also in step 5 that we start by computing the 
inverse of 

,j jm  since in fields 
pF  division is usually much more 

time-consuming than multiplication. 
 
Conclusion 
 
According to above, the number of necessary 
multiplications/divisions in this algorithm is clearly asymptotic 
to 3 / 3n  in the general case. Note however that this does not 
represent the true complexity of the algorithm, which should 
be counted in bit operations. This of course depends on the 
base field. Inverting a square matrix M means solving the 

linear systems 
iMX E  where the iE  are the canonical basis 

vectors of nK , hence one can achieve this by successive 
applications of Algorithm 1. Clearly it is a waste of to use 
Gaussian elimination on the matrix for each linear system. 
More generally this is true when we must solve several linear 
systems with the same matrix M but different right hand sides 
B. We should compute the inverse of M and then one solution 
of a linear system requires only a simple matrix times vector 
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multiplication requiring n2 field multiplications. To obtain the 
inverse of M only a slight modification of Algorithm 1 is 
necessary. 
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