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1. INTRODUCTION

Fixed point theory is one of the famous theories in mathematics and has a broad set of application in many branches of
mathematics such as the theory of differential and integral equations. In 1922, Stefen Banach (1922), a Polish mathematician,
established a very important result regarding existence of fixed points for contraction mapping on metric spaces. A mapping
T: X - X where (X, d) is a metric space, is said to be a contraction if there exists k € [0, 1) such that for all x,y € X

A(Tx, Ty) S KA(X,Y) s (1)

If the metric space (X.d) is a complete, then mapping satisfying (1) has a unique fixed point. Inequality (1) implies continuity of
T. A natural question is that whether we can find a contractive condition which will imply existence of fixed point in a complete
metric space but will not imply continuity. In 1969, Kannan in [19] established the following results in which the above question
has been answered in the affirmative. If T: X — X where (X, d) is a complete space satisfies the inequality

A(Tx,TY) S BIAQCTX) + AV, TY) ] e 2)

Where S € [0, %) and x,y € X, then T has a unique fixed point. A similar contractive condition has been introduced by Chatterjee
(1972) as following: If T: X — X where (X, d)a complete metric space is satisfies the inequality

A(Tx,TY) S y[AC,TY) + AV, TX)] e e e 3)

where y € [0,%) and x,y € X, then T has a unique fixed point. The mapping satisfying (1.3) are called Chatterjee type mapping.
In 1972, Zamfirescu (1972) obtained a generalization of Banach’s, Kannan’s and Chatterjee’s fixed point theorems.
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One of the most general contraction condition for satisfying the following condition has been obtained by Ciric (1974) in 1974.If
T:X — X where (X, d) is a complete metric space satisfying the inequality

d(Tx,Ty) < h.max {d(x,y),d(x, Tx), d(y, Ty),d(x,Ty),d(¥,TX)} e @)

for allx, y € X. A mapping satisfying (1.5) is commonly called quasi contraction. In 2004, Berinde (2007) defined the notion of
weak contraction mapping which is more general than a contraction mapping. In (Berinde, 2010) renamed it as an almost
contraction mapping. The Zamfirescu fixed point theorem has been further extended to almost contractions (Berinde, 2010), a
class of contractive type mappings which exhibits totally different features than the ones of the particular results incorporated .i.e.,
an almost contraction generally does not have a unique fixed point [See Example 1 in [7]. Moreover, he proved that any strict
contraction, the Kannan (1968) and Zamfirescu (1972) mapping as well as a large class of quasi-contractions are all almost
contractions. In (2007), Huang and Zhang initiated cone metric spaces, which is a generalization of metric spaces, by substituting
the real numbers with order Banach spaces. They have considered convergence in cone metric spaces, introduced completeness of
cone metric spaces, and proved a Banach contraction mapping theorem, and some other fixed point theorem involving contractive
type mappings in cone metric spaces using normality condition. Abbas and Jungck (2008) used this setting as ambient space in
order to formulate and prove several fixed point theorems that extends well known fixed point theorems for contractive type
mapping from the case of usual metric spaces. Indirect relation to this result, in (Rezapour and Hamlbarani, 2008) the author
pointed out that all the fixed point theorems, established in (Huang and Zhang, 2007) for the case a cone metric space ordered by
normal cone p with normal constant K, could be formulated and proved in a more general case of a cone metric space. On the
other hand Sessa (Sessa, 1982) introduce the notion of weakly commuting maps in metric spaces which are the generalization of
commuting maps. Jungck (Jungck, 1986) enlarged this concept of weakly commutativity by introducing compatible maps. In
(Berinde, 2010), Vasile Berinde obtained coincidence and common fixed point theorems, similar to the one in (Abbas and Jungck,
2008), but for more general class of almost contraction, by restricting the ambient space to the class of usual metric spaces. In
(Bakhtin, 1989), Bakhtin introduced b-metric space as a generalization of metric spaces and proved a contraction mapping
principle in b-metric space that generalized the famous Banach contraction principle in metric spaces. In 2011, Hussain and Shah
(Hussain and Shah, 2011) introduced cone b-metric spaces as a generalization of b-metric spaces and cone metric spaces.
Recently, Huang and Xu (Huang and Xu, 2012) have proved some fixed point theorems of contraction mapping without the
assumption of normality condition in complete cone b-metric space. Inspired and motivated by a result mentioned on (Berinde,
2010) and using the notion introduced on (Shi and Xu, 2013) and (Huang and Xu, 2012), the purpose of the research is to study
existence and uniqueness of coincidence point and common fixed point results for a large class of almost contraction in complete
cone b-metric space.

2. PRELIMENARIES

Definition 2.1: Let E be a real Banach space and P be a subset of E.The subset P is called a cone if and only if:

i. P isnon-empty, closed and P + @

i, abeR, ab>0and x,ye P= ax + by € P.
iii. Pn—P'={0}

On this basis, we define a partial ordering < with respect to P by x < y if and only if y — x € P.we shall write x < y to indicate
that x < y but x # y, while x « y will stand fory —x € i nt P Write ||.||as the norm on E.The cone P is called normal if there is
a number k > 0such that 0 < x < y implies||x| < k||y||/for all x,y € E.The least positive number k satisfying the above
condition is called the normal constant of P.

Definition 2.2: Let X be a nonempty set. Suppose that the mapping d: X X X — E satisfies:
i. 0<d(x,y)forallx,y € X withx # yandd(x,y) = 0ifand only if x =y
ii. d(x,y) =d(y,x)foral kx,y € X.
iii. d(x,y) <d(x,z)+d(z,y)foral x,y,z € X.
Then d is called a cone metric on X and (X, d)is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

Example 2.1: Let E =R%P = {(x,y) €E|x,y=0},X = Rand d: X XX > Ebe such that d(x,y) = (|Jx —y|, al]x —
¥|), where @ = 0 is a constant. Then (X, d) is a cone metric space.

Definition 2.3: Let X be a nonempty set and let s = 1 be a given real number. A function is called a b-metric provided that, for all
Xx,y,z € X

i. d(x,y)=0ifandonlyifx =y

ii. d(x,y)=d,x)
iii.  d(x,y) <sld(x,z)+d(z,y)]forall x,y,z € X.
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In this case pair (X, d) is called a b-metric space.

It is clear that the definition of h-metric space is an extension of metric space. Also, if we consider s = 1 in Definition 3.1.3, then
we obtain definition of metric space.

Remark 2.1: Note that a metric space is evidently a b-metric space. However, b-metric on X need not be a metric on X.

Example 2.2: Let (X, d) be a metric space and p(x,y) = (d(x,y))? where p > 1 is a real number. Then p is a b-metric with § =
2P~ However (X, p) is not necessarily a metric space.

Example 2.3: Let X be a set of real numbers and let d(x,y) = |x — y| be the usual Euclidean metric. Then p(x,y) = (x — y)? is
a b-metric on R with s = 2, but it is not a metric on R.

Definition 2.4: Let X be a nonempty set and s > 1 be a given real number. A mapping d: X X X — E is said to be cone b-metric if
and only if, for all x,y,z € X the following conditions are satisfied:

i) 0<d(x,y)withx # yandd(x,y) = 0ifand only ifx =y
i) d(x,y) =d(y,x)
iii) d(x,y) < s[d(x,2) +d(z,y)]

In this case the pair (X, d) is called a cone b-metric space.

Remark 2.2: The class of cone b-metric spaces is larger than the class of cone metric spaces. Since any cone metric space must be
a cone b- metric space. Therefore, it is obvious that cone b-metric spaces generalize b-metric spaces and cone metric spaces.

Example 2.4: LetX = [1,2,3,4],E = R%, P = {(x,y)eE:x = 0,y = 0}.

( Ix—ylfl,x—ylfl), if x#y
0, if x=y

Defined by, ¢ ( X, y) =

Then, (X, d)is a cone b-metric with coefficient S = g. But it is not cone metric space, since the triangular inequality is not
satisfied. Indeed,

d(1,2) >d(1,4)+d(4,2),d(3,4) > d(3,1) +d(1,4).

Observe that if s = 1, then the ordinary triangle inequality in a cone metric space is satisfied, however it does not hold true
when K > 1. Thus, the class of cone b-metric spaces is effectively larger than that of the ordinary cone metric spaces. That is,
every cone metric space is a cone b-metric space, but the converse need not be true. The following examples illustrate the above
remarks.

Example 2.5: Let X = R,E = E? and P = {(x,y):x = 0,y = 0}. Define d: X X X — E by

d(x,y) = (Ix = yI% Ix — yI%).

Then, (X, d) is a cone b-metric space with coefficient s = 2. But it is not a cone metric space, since the triangular inequality is not
satisfied.

Definition 2.5: Let(X, d) be a cone b-metric space x € X and {x,,},>; a sequence in X then:
e {x,}n>1Converges tox whenever, for every c e EwithO < ¢, there is a natural number N such that d(x,, x) <
¢ for all n = N.we denote this byl i o, X, = x, 07 x, = x(asn — ).
e {x,},511s a Cauchy sequence whenever for every ¢ € Xwith 0 « ¢ there is a natural number N such that d(x,, x,,) <
cforalln,m > N.
. (X, d) is a complete cone b-metric space if every Cauchy sequence is convergent.
Lemma 2.1: Suppose a,, € C and |a,.; — a,| < €, and Y51 €, < . Thenl iy, a,_a exists and |a — a,| < 6, = Di=n €x
Proof: Let m > n, there exists an N such that

lam = anl = [E75 (@rs1 — @)l < BF5Qurs — ag] < XEop € = 8y, forallmn > N

Since, C is complete, a,, € C is Cauchy sequence.
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Remark 2.3: It follows from above definitions that if {Sx,,,} is a subsequence of a Cauchy sequence {Sx,,} in a cone metric
space (X,d) and Sx,,,; = z then Sx, = z.

Proposition 2.1: Let (X,d) be a cone b-metric space the following properties are often used while dealing with cone b-metric
space in which is not necessarily normal.

Ifu<<vandv << w,thenu << w

If0 < u « ¢ foreach ¢ € i nt Pthen u = 0.

Ifa < b+ c foreachc € intPthena < b.

If0 < d(x,,x) < by, and b,, = 0, then x,, — x.

Ifa <\a, wherea € P,0 <A< 1,thena = 0.

Ifc €intPO < a, and a,, = 0, then there exists ny € N such that a,, < ¢ for alln > n,.

Definition 2.6: Let (X, d) be metric space. A mapT : X — X is called an almost contraction with respect to a mapping S : X - X
if there exist a constant 6 € [0,1) and some L = 0 such that

d(Tx,Ty) < 8d(Sx,Sy) + Ld(Sy,Tx), forall x,y € X.

If we choose S = I x I xis the identity map on X, we obtain the definition of almost contraction, the concept introduced by Berinde
(2010).

Definition 2.7: Let E be a subset of a metric(X,d). Let Sand T be two self- maps of a metric space(X,d), T is called S-
contraction if there exists k € [0,1) such that

d(Tx,Ty) < kd(Sx,Sy), forallx,y € E.

Definition 2.8: Let (X, d) be a metric space. Amap T : X — X is said to satisfy condition (B)’ if there exist a constant § € [0,1)
and some L = 0 such that

d(Tx,Ty) < &d(x,y) + Lmin{d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}, forall x,y € X.

Definition 2.9: Two self-mappings T and S on X is said to be weakly compatible if S and T commute at their coincidence point
(i.e., STx = TSx,x € X whenever Sx = Tx.) A point y € X is called a point of coincidence of two self-mappings S and T on X
if there exists a point x € X suchthaty = Tx = Sx.

Definition 2.10: Let (X, d) be a metric space, S and T be self-mappings on X, with T(X) € S(X) and x, € X. Choose a point x;
in Xsuch that Sx; = T’x,. This can be done since T(X) S S(X). Continuing this process, for x,, in X we can find x,,,, in X such
that

Sxk+1 = Txk; k = 0, 1, 2,
The sequence {Sx,} is called a T-sequence with initial point x,.

Lemma 2.2: Let Xbe a non-empty set and the mappings S,T,: X — X have a unique point of coincidence v in X. If (S, T) are
weakly compatible, then S, T have a unique common fixed point.

Proof: Let v be the point of coincidence of S, and T. Then v = Su = Tu for some u € X. By weakly compatibility of (S,T) we
have, Sv = STu = TSu = Tv. It implies that Sv = Tv = w (say). Thus, w is a point of coincidence of S, and T.Therefore,
v=w

In 2010, Berinde proved the following existence and uniqueness theorems of common fixed points of a pair of self-maps which

generalizes and extends so many existing related results in (Berinde, 2010; Huang and Zhang, 2007; Abbas and Jungck, 2008;
Rezapour, 2008).

Theorem 2.1: Let (X, d) be a cone b-metric space and let T, S: X — X be mappings for which there exists a constant § € [0,1) and
some L = 0 such that

d(Tx,Ty) < 6d(Sx,Sy) + Ld(Sy, Tx), forallx,y € X

If the range of S contains the range of T and S(X) is complete subspace of X, then T and S have a coincidence point in X.
Moreover, for any x, € X, the iteration {Sx, } converges to some coincidence point x* of T and S.
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Theorem 2.2: Let (X, d) be a cone b-metric space and let T, S: X — X be mappings for which there exists a constant 6 € [0,1) and
some L; = 0 such that

d(Tx,Ty) < 6d(Sx,Sy) + L,d(Sx,Tx), forallx,y € X

If the range of S contains the range of T and S(X) is complete subspace of X, then T and S have a coincidence point in X.
Moreover, for any x, € X, the iteration {Sx,,} converges to some coincidence point x* of T and S.

Theorem 2.3: Let (X, d) be a cone b-metric space and let T, S: X — X be mappings for which there exist a constant § € [0,1) and
some L = 0 such that

d(Tx,Ty) <6.d(Sx,Sy) + Lmi n{d(Sx,Tx),d(Sy, Ty),d(Sx,Ty),d(Sy,Tx)},

forall x,y € X.

If the range of S contains the range of T and S(X) is a complete subspace of X, then has a unique coincidence point in X.
Moreover, if T and S are weakly compatible, then T and S have a unique common fixed point in X. In both cases, for any x, € X,

the iteration {Sx,,} defined by converges to the unique common fixed point (coincidence point) x*of T and S.
We now establish the main results of this research work.

3. RESULTS
We start this section by presenting a coincidence point theorem.

Theorem 3.1: Let (X, d) be a cone b-metric space with coefficient S > 1 and let T, S: X = X be mappings for which there exists a
constant k € [0,%) and some L > 0 such that

d(Tx,Ty) < kd(Sx,Sy) + LA(Sy,Tx), forall X, 7 € X it e (3.1

If T(X) € S(X)and S(X) is complete subspace of X, then T and S have a coincidence point in X. Moreover, for any x, € X, the
iteration {Sx,} converges to some coincidence point x* of T and S.

Proof: Let x, be an arbitrary point in X.sinceT(X) € S(X) we can choose x; € X such that Txy,_Sx;. Also since T(X) S
S(X),Tx, = Sx, for some x, € X. Continuing in this way, for x, in X, we can find x,,,; € X such that

Sxns1=Txn for m=0,1,2,... (3.2)
If x == x,, and y = x,,_; are two successive terms of the sequence defined by (3.2.2), then by (3.2.1), we have
d(Sx,, Sxpyq) = d(Txp_1,Txy) < kd(Sx,_q1,Sx,) + Ld(Sx,, Txp_q)

Now, we consider two cases.
Case i) Suppose Sx,, = Sx,,, for some n € N, then by using inequality (3.2.1),

We have,

A(Sxp41,Sxn42) = d(Txp, Txpy1) < kd(Sxy, Sxp4q) + Ld(Sxp 44, Txy)
This implies that

d(SXn41,SXn42) < kd(Sxp, Sxp41)

This yield

d(SXnt1,SXny2) =0

= SXpi1 = SXpio

= an = an+2

Continuing on this process, inductively, it follows that Sx,, = Sx,,, for all m > n.
So, that {Sx,,}m > n is a constant sequence and hence it is a Cauchy sequence.

Case ii) Suppose Sx,, # Sx, 4, for alln € N, then we have
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d(Sx,, Sxpyq) = d(Txp_1,Txy) < kd(Sx,_q1,Sx,) + Ld(Sx,, Txp_q)
< kd(Sxp_1,Sx,) + Ld(Sxy,, Sxy,)

This implies that

d(Sxp, Sxpyq) < kd(Sxp_q,Sxp), foralln = 1,2,3,...

Thus, for eachn = 1,2,3, ..., we have

d(Sxpi1,5%n) < kd(Sxp, Sxp_1) < k2d(Sxp_1,Sxp_3) < -+ < k™d(Sxq, Sxp)

Then, for all p = 1, we have

d(an,an+p) < 5d(Sxp, Sxn41) + 5A(SXp41, SXpip)
< 5d(Sxp, Sxpy1) + 52d(SXnp1, SXpy2) + Szd(sxn+2'5xn+p)
< sd(Sxy, Sxpi1) + 52d(Sxp i1, Sxpiz) + oo+ sPA(Sxg, Sx1).

Now, by (3.2.4) and sk < 1 imply that

d(Sxp, Sxn4p) < sk™d(Sxg, Sx1) + s°k™d(Sxo, Sx1) ... SPK™ P71 d (Sxo, Sx1)
< (sk™ + s2k™1T 4 oo 4 sPTHEMP) G (S, Sxq)
< sk™(1 + sk + s2k? + - s™mTT LMD 4 (Sxy, Sxq)

sk™
1-sk

< d(Sxg, Sx1).

Since k € [0, %) , we notice that %d(Sxo,le) - 0asn — oo,
Thus, for each 0 « ¢, there exists N € N such that
d(Sxn, Sxpyp) K eforalln > Nandp = 1.

Therefore, {Sx,,} is a Cauchy sequence in S(X).

Since S(X) is complete, there exists x* in S(X) such that

L0 0 SXna1s X

We can find p € X such that Sp = x*.Then by (3.2.3) and (3.2.4)

We further have,
n

1-k

d(Sx,, Tp) = d(Tx,_1,Tp) < kd(Sx,_1,Sp) < d(Sxq,Sx)

This shows that

Ll SxcSD

By (3.5), (3.6) and Remark (3.3) it results now that Tp = Sp. That is P is a coincidence point of T and S(or x* is a point of

Tand S).

Theorem 3.2: Let (X, d) be a cone b-metric space with coefficient S = 1 and let T, S: X X X — X mapping satisfies (1) for which

there exists a constant k € [0, %) and some L; = 0 such that

d(Tx,Ty) < kd(Sx,Sy) + Lid(Sx,Tx ), forall X,y € X e

If T(X) € S(X)and S(X) is a complete subspace of X, then T and S have a unique coincidence point in X. Moreover, if T and
S are weakly compatible, then T and Shave a unique common fixed point inX. In both cases, forx, € X, the
iteration {Sx,,} defined by (3.2) converges to the unique common fixed point (coincidence point) x*of S and T.
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Proof: By the proof of Theorem3.1, we have that T and S have at least a point of coincidence, say x* = Tp = Sp, p € X.
Now, let us show that T and S have a unique point of coincidence. Assume, there exists ¢ € X such that Tq = Sq.
Then, by inequality (3.7), we get

d(Sq,Sp) = d(Tq,Tp) < kd(Sq,Tp) + L,d(Sq,Tq)

This implies that,

d(Sq,Sp) < kd(Sq,Sp)

Which yields,

(1-k)d(Sq,Sp) <0.

By definition, 0 < d(Sq, Sp), that is, d(Sq,Sp) € P and by proposition 3.1(e),

d(Sq,Sp) =0

This shows that Sq = Sp = x”.

Thatis, T and S has a unique point of coincidence x*.

Now, if T and S are weakly compatible, by Lemma [3.2] it follows that x* is their unique common fixed point.

The next theorem is a stronger but simpler contractive condition that ensures the uniqueness of coincidence point and which
unifies (3.1) and (3.7).

Theorem 3.3: Let (X, d) be a cone b-metric space with coefficient s > 1 and let T, S: X — X be mappings for which there exist a
constant k € [0, i) and some L = 0 such that

d(Tx,Ty) < k.d(Sx,Sy) + Lmi n{d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)} i, (3.8)
Forall x,y € X. If T(X) € S(X) and S(X) is a complete subspace of X, then has a unique coincidence point in X. Moreover, if T
and S are weakly compatible, then T and S have a unique common fixed point in X. In both cases, for any x, € X, the iteration

{Sx,} defined by (3.2) converges to the unique common fixed point (coincidence point) x* of S and T.

Proof: Let x, be an arbitrary point in X, since T(X) € S(X) we can choose x; € X such that Tx,_Sx;.Also since T(X) S
S(X), Tx; = Sx,for some x, € X. Continuing on this process, inductively we get a sequence {x,,} in X such that

Sxpy1=Tx, forn=10,1,2, ..

Without loss of generality assume that Sx,, # Sx,,, foralln = 1,2,3, ... and

If x == x,, and y = x,,_; are two successive terms of the sequence defined by (3.2), then by (3.8), we have
d(Sx,,Sxp41) = d(Txp_1,Txy) < k.d(Sx,_1,Sx,) + L.M

Where M = mi n{d(Sx,, Tx,), d(Sxp_1, Txp-1), d(Sxp, Txp_1), d(Sxp_1,Tx)} =0,

Since d(Sx,, Tx,_1) = 0. The rest of the proof follow as in the case of Theorem3.2.2.

The following corollaries are also obtained from our main results.

Corollary 3.4: Let (X,d) be a cone b-metric space with coefficient s > 1 and let T,S: X = X be two mappings for which there
exist sk € [0,%) such that for all x,y € X,

A(Tx,Ty) S k[A(Sx,Tx) + A Sy, Tyl e e e (3.9)

If T(X)SS(X) and S(X) is a complete subspace of X, then T and S have a unique coincidence point in X. Moreover, if T and S are
weakly compatible, then T and S have a unique common fixed point in X. In both cases, the iteration {Sx,} defined by (3.2)
converges to the unique (coincidence) common fixed point x* of S and T, for any x, € X.
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Proof: Let x, be an arbitrary point in X. since T(X) S S(X) we can choose x; € X such that Tx,_Sx;.Also since T(X) € S(X),
Tx; = Sx, for some x, € X. Continuing on this process, inductively we get a sequence {x,,} in X such that
Sxpi1=Tx, forn =0,1,2, ...

Without loss of generality assume that Sx,, # Sx,,; foralln = 1,2,3, ...
Then, we have

d(an+1,SXn) = d(Txn' Txn—l) < k[d(sxn: Txn) + d(sxn—l' Txn—l)]
< k[d(sxnrsxn+1) + d(sxn—lrsxn)]
< kd(Sxp, Sxp4q) + kd(Sx,_q,Sxy)

This implies that

n

k k
A(S 1, 570) < T (S 1,55y < (m) d(Sxo,Sx,)
S h"d(Sxo,Sx1)  Whereh=——€ [0,1) (3.10)

Then, for allp = 1, we get
d(sxnﬂsxrwp) < s[d(sxnﬁsxn+1) + d(sxn+1'5xn+p)
< 5d(Sxp, Sxn41) +5A(SXp 41, SXpip)
< Sd(an,an+1) + Szd(sxn+1rsxn+2) + Szd(sxn+2'5xn+p)
< sd(Sxp, Sxpy1) + %A (SXpi1, SXnya) + - + SPA(SXpyp-1, SXn1p)

By using (3.10), we have

d(Sxp, Sxpyp) < Sh™d(Sxo, Sx;) + SZR™ 1 (Sxo, Sx;) + -+ + SPR™P~1d (Sx, Sx;)
< (sh™ + s2h™? + - + sPR™P~1)d(Sxy, Sx1)

hn
STd(SX0,SX1) (3.11)

Since h € [0,1), %d(ng,le) - 0asn — .
The rest of the proof follows as in case of Theorem (3.2).

Corollary 3.5: Let (X, d) be a cone b-metric space with coefficient s > 1 and let T, S: X = X be two mappings for which there
exist sA € [0,%) such that forall x,y € X,

A(Tx, TY) S AA(Sx,Ty) + d(SY, TX) e (3.12)

IfT(X) € S(X) and S(X) is a complete subspace of X, then T and S have a unique coincidence point in X. Moreover, if T and S
are weakly compatible, then T and S have a unique common fixed point in X. In both cases, the iteration {Sx,} defined by (3.2)
converges to the unique (coincidence) common fixed point x*of S and T, for any x, € X.

Proof: Let x, be an arbitrary point in X. since T(X) € S(X) we can choose x; € X such that Tx,_Sx;.Also since T(X) ©
S(X),Tx; = Sx,for some x, € X. Continuing on this process, inductively we get a sequence {x,} in X such that

Sxp41=Tx, forn=10,1,2, ...
Without loss of generality, assume that Sx,, # Sx,,, foralln =1,2,3, ...
Then, we obtain

d(Sxp, Sxp41) = d(Txn—q, Txp) < A[d(Sxy-1, Txn) + d(Sxn, Toxp—1)]

pS A[d(sxn—lrsxn+1) + d(sxntsxn)]

< sA[A(Sxp_1,Sx,) + d(Sxy, Sxpi1)]
Thus, we have

A A\"

d(Sxp, Sxpiq) < 1i—sad(an_l,an) < (;M) d(Sxq, Sxq).

< UMA(Sxg, Sx1), Whete U = = e (3.13)

1-sA
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1 sA
Note that sA € [0, E) , thenml € [0,1).

Thus, for all p = 1, we have
d(sxnrsxn+p) = S[d(sxnrsxn+1) + d(sxn+1r5xn+p)

< 5d(Sxp, Sxn41) + 5A(SXp41, SXpip)
< 5A(Sxp, Sxpy1) + 52 (SXnp1, SXpy2) + Szd(sxn+2'5xn+p)
< Sd(sxn' an+1) + Szd(sxn+1'sxn+2) +t Spd(an+p—1r5xn+p)

By using (3.13), we have
d(Sxn, Sxpyp) < sV™A(Sxo,Sx1) + 20 (Sxg, Sx1) + -+ + SPUVTP LA (Sx, Sxy)
< (sv™ + s2v™ 4 o 4 SPYPTY G (Sxg, Sxy)
S d(SX0, K1) (3.14)

n 1-sv
d d(Sxg,Sx,) = 0asn — oo.

Since,v € [0,1),

1-sv
The rest of the proof follows as in case of Theorem 3.2.

Corollary 3.6: Let (X, d) be a cone b-metric space with coefficient s > 1 and let T,S: X = X be two mappings for which there
exist sa € [0,?) ,sb,sc € [0, %) such that for all x, y € X, at least one of the following conditions is true:

(z,) d(Tx,Ty) < ad(Sx,Sy),

(z,) d(Tx,Ty) S B[A(SHTX) + A0SV, TY) ] e e (3.15)
(z3) d(Tx,Ty) <c[d(Sx,Ty) + d(Sy, Tx).

If T(X)SS(X) and S(X) is a complete subspace of X, then T and S have a unique coincidence point in X. Moreover, if T and S are
weakly compatible, then T and S have a unique common fixed point in X. In both cases, the iteration {Sx,} defined by (3.2)
converges to the unique (coincidence) common fixed point x*of S and T, for any x, € X.

Proof: From the proof of Theorem 3.1, Corollary 3.4 and Corollary 3.5, the conclusion of the Corollary follows.

3.4. Example

Let E = R? be Euclidean plane, and P = {(x,y) € R%:x,y > 0} be a positive cone of E.

Let X = {(x,0) € R%:0 < x < 1} and define d: X X X = P by
d((x,0),(7,0)) = (Ix—yl% x—yl>) V¥(x0),(,0) € X

then (X, d) be complete cone metric space. Let T, S: X — X be defined by

(00), 0<x<- (x,0), 0<x <=
T(x,0) =1, 1 and S(x,0) = 1 respectively.
(E'O) s<x<1 (10), t<x<1

We have, T(X) = {(0,0), (%,0)} c {(x, 0):0 <x< %} u{(1,0)} = SX).

Moreover, (0,0),is the unique coincidence point of S and T, and since obviously T and § commute at (0,0), then Sand T are
weakly compatible.

In order to show that S and T do satisfy the contractive condition of (3.8) in Theorem 3.3.

Let us denote
My =[05)x 10 My = [0.3) > 1l

Ms = [0 {} Mo = [3 1] G

Clearly,
[0,1] x [0,1] = M; UM, U M; U M,.

Casei) For(x,y) € M;
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T(x,0) = (0,0), T(y,0) = (0,0),
S(x,0) = (x,0)and S(y, 0) = (y,0)

In this case 5 and T satisfy contractive condition (3.8) of Theorem 3.3.
Indeed by (3.8), we get

(0,0) < k(Ix —yI?, Ix —yI?) + L(IxI?, [xI?)

This holds for all x,y € [O,i) and any constant L. > 0.

Case ii) For (x,y) € M,

T(x,0) = (0,0), T(y, 0) = (%,0),8()(, 0) = (x,0) and S(y,0) = (1,0)
Again in this case 3 and T satisfy the contractive condition (3.8).

Indeed by (3.8), we have

|—12 -1
51’ls

This holds for x € [0,3),y € (5,1]and L > 0.

2
) < k(x =117, Ix = 11?) + L(IxI?, [x]*)

Case iii) For x,y € M,
T(x,0) = (0,0), T(y,0) = (0,0),S(x,0) = (x,0)andS(y, 0) = (1,0).
By the contractive condition (3.8),
we get
(0,0) < k(Ix — 117, Ix = 1|*) + L(IxI?, xI?)

This holds for x € [oi) andL > 0.

Caseiv) Forx,y € M,.

1 1
T(x,0) = (g,O),T(y, 0) = (g,o),S(x, 0) = (1,0)andS(y, 0) = (1,0).

By the contractive condition (3.8),

We have,

2 12
1-2|)

1
(0,0) < k(,0,0) + L(|1 -< -

)

This holds forx,y € [+, 1]andL > 0,

By summarizing, we conclude that 3 and T satisfy the contractive condition of (3.8) in Theorem (3.3) with k < % andL > 0.

Hence, (0,0) is a unique fixed point of S and T.

4. CONCLUSION

In (Berinde, 2010) the author obtained coincidence and common fixed point theorems for more general class of almost contraction
and also in (Berinde, 2010) proved the existence of coincidence points and common fixed points for a large class of almost
contraction in cone metric spaces. The main aim of this study is to extend the results obtained in (Berinde, 2010) to cone b-metric
spaces. We can also obtain the following particular cases from our main result.



66964 International Journal of Current Research, Vol. 10, Issue, 03, pp, 66954-66964, March, 2018

1) If s = 1 in Theorem 3.1, then we obtain Theorem 2 in (Berinde, 2010).

2) Ifin (3.1), we have L = 0, then by Theorem 3.1, we obtain a generalization of Theorem 2.1 in [2]. If the cone b-metric
reduces to a usual metric space, then by Theorem 3.1 we obtain Theorem 2 in (Berinde, 2010) which, in turn,
generalizes the Jungck common fixed point [17].

3) Ifin Theorem 3.1, the cone P = R*, the nonnegative real semi-axis, and s = 1, then by Theorem 3.1 we obtain the
main result (Theorem 3) in (Berinde, 2010)

4) Also we observe that by Theorem 3.1, if s = 1, we obtain a significant generalization of Theorem 2.8 in (Rezapour and
Hamlbarani, 2008), which has been obtained there by imposing for the contractive inequality (3.1) the very restrictive
condition § + L < 1
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