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INTRODUCTION 
 
Number theory, is the study of the set of positive whole 
numbers  ,........3,2,1  which are often called the set of natural 

numbers. We will especially want to study the relationships 
between different sorts of numbers. The main goal of number 
theory is to discover interesting and unexpected relationships 
between different sorts of numbers and to prove that these 
relationships are true. The theory of numbers offers a rich 
variety of fascinating properties. In this context one may refer 
(Ivan Niven, Fifth edition; David M. Burton,
Andre Weil, 1987; Carmichael, 1959; Brothe
Butcher, 1978; Connell, 1959; Hendy, 1978
In this communication, we find the general formula for 

Fibonacci sequence by representing it in the matrix of order
Also, we prove some theorems using the recurrence relation for 

 2,1 -Fibonacci sequence and the properties of the matrices.

 
Method of analysis 
 

The  2,1 -Fibonacci sequence satisfy 0F

which are ....,.........85,43,21,11,5,3,1,1,0 . The properties of 
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ABSTRACT 

In this communication, we establish the general formula for  ,1

prove some theorems using the recurrence relation for  2,1 -Fibonacci sequence and the properties 

of the matrices.  
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Number theory, is the study of the set of positive whole 
which are often called the set of natural 

numbers. We will especially want to study the relationships 
between different sorts of numbers. The main goal of number 
theory is to discover interesting and unexpected relationships 

bers and to prove that these 
relationships are true. The theory of numbers offers a rich 

In this context one may refer 
David M. Burton, Sixth edition; 

Brother U.Alfered, 1963; 
1978; Stolarsky, 1977). 

the general formula for  2,1 -

Fibonacci sequence by representing it in the matrix of order 3 . 
the recurrence relation for 

Fibonacci sequence and the properties of the matrices. 

00  and 11 F  

. The properties of  

Department of Mathematics, Urumu Dhanalakshmi College, Trichy 

 

 
these numbers are summarized in the form 

  nn
nF 21

3

1 1  
 . 

 

The  2,1 -Fibonacci sequence matrix is given by 
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The recurrence relation for 

given by 1 2   nnn FFF
 
Theorem: 1 
 

Let R  be a matrix

















010

210

021
, then 
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Proof 
 
Let us prove the theorem by using the principle of 
mathematical induction on n . 
 

We have,            
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We know that, 
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Substituting the above values in (1), we get 
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Therefore, the result is true for 1n . 
 

Assume that the result is true for kn  . 
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To prove, the result is true for 1 kn . 
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Hence, we conclude that 
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Corollary 
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Theorem: 2 

Let R  be a matrix
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Proof 
 
Let us prove the theorem by using the principle of 
mathematical induction on n. 
 
We have, 
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Therefore, the result is true for 1n . 
 

Now, assume that the result is true for 1 rn . 
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To prove, the result is true for rn  . 
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Hence, we conclude that 
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Theorem: 3 
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Proof 

Given 
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The characteristic equation of R  is given by 
 

0 IR   
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Therefore, the Eigen values of R  pointed out by 
 

2,1,1 321    

 

The Eigen vectors of R  are given by   0 XIR   

 

Hence, the Eigen vectors of R corresponding to the Eigen 

values of R are obtained as 
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Now, the diagonal matrix of R is given by, 
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Hence, 
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In general, 
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Using the properties of similar matrices, we can write 
 

PRPD nn 1  
 
where n is any positive integer. Furthermore, we can write 
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By theorem 1, we have 
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From (2) and (3), we get 
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Equating the  2,3  entry on both sides, we get 
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Theorem: 4 

Let S  be a matrix
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Corollary 
 

    2212 21  nnnSDet  

 
Conclusion 
 

In this paper, we evaluate the general formula for  2,1 - 

Fibonacci sequence and also we prove some theorems by using 
various properties of matrices. In this manner, one may prove 
some other theorems for other sequences. 
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