REVIEW ARTICLE

INTERVENTIONAL ENDOSCOPIC ULTRASOUND: THE NEXT FRONTIER IN GASTROINTESTINAL ENDOSCOPY

*Taisir Shahriar
Dhaka Medical College & Hospital, Bangladesh

ARTICLE INFO

Article History:
Received 9th April, 2017
Received in revised form
11th May, 2017
Accepted 24th June, 2017
Published online 31st July, 2017

Key words:

ABSTRACT

Endoscopic ultrasound (EUS) has become well established as a diagnostic modality in gastrointestinal cancer staging. It offers high-resolution imaging and fine-needle biopsy, which is essential in tumor and nodal staging of gastrointestinal cancers. In the recent decade, however, many therapeutic applications of EUS have become possible. Currently, interventional EUS endoscopy involves celiac plexus neurolysis, pseudocyst drainage, and intratumoral fine-needle injection therapy for inoperable pancreatic malignancy. Emerging techniques include the accurate endoscopic delivery of radioactive beads to localize tumor therapy as well as other therapies, such as radiofrequency ablation or cryotherapy. Diagnostic and therapeutic access to the biliary tree and pancreatic duct is increasingly being used successfully in failed endoscopic retrograde cholangiopancreatography (ERCP) procedures. This review discusses these procedures and several evolving future applications, including vascular access and EUS guided enteral anastomosis.

INTRODUCTION

Over several decades, the evolution of radiographic imaging has resulted in significant advancement of medical diagnostics. Physical findings can be confirmed by noninvasive or minimally invasive modalities. Moreover, high-resolution characteristics and abnormalities of organs, blood vessels, and other vital structures can be detected beyond the scope of external physical examination. Therapy based on diagnostic findings is the subsequent step to radiographic imaging. In an ideal setting, both diagnostics and therapy can be combined with 1 procedure. One imaging modality, endoscopic ultrasound (EUS), offers this combination in a unique fashion. EUS made its debut in 1985 as a diagnostic tool for pancreatic disease. During the last 2 decades, this technology has undergone considerable evolution with imaging of almost all aspects of the gastrointestinal tract. Staging of cancers of the esophagus, stomach, small intestine, pancreas, biliary tract, and rectum have been well established. Moreover, imaging outside of the gastrointestinal tract has also been effective, including the mediastinum, pelvis, and perigastric organs, such as the adrenal glands, kidneys, spleen, and liver. High-resolution images of 1 mm have become available with current technology, which exceeds several other radiographic modalities in depicting details. One of the biggest advances to EUS came in the early 1990s with the introduction of the curvilinear array echoendoscopes. Not only was imaging of high quality but also the ability to perform fine-needle aspiration (FNA) biopsy became possible. Given the ease of targeting small lesions accurately with FNA biopsy, the natural evolution of this technology has led to interventions delivered through this same approach. EUS has rapidly evolved into becoming a primary modality in many interventional endoscopic techniques. This review will discuss several of the current therapeutic applications, such as celiac plexus neurolysis (CPN), pseudocyst drainage, and cyst aspiration. Other evolving techniques, such as fine-needle injection (FNI) of therapeutic agents into tumors or angiographic interventions, will also be discussed. This unique technology of combined optical and sonographic imaging is rapidly evolving into both a diagnostic and a therapeutic modality.

Technical aspects

There are 2 types of echoendoscopes that are traditionally used. The radial sector scanner has an ultrasound probe attached to the tip of the echoendoscope with a water-filled balloon to facilitate imaging of the target. This provides a view of 360 degrees surrounding the probe and is useful in identifying organs and vessels and lymph nodes. It is also particularly useful in delineating significant details of the different layers of the gastrointestinal wall, such as the
esophagus, gastric wall, duodenum, and rectosigmoid regions. This particular endoscope serves a diagnostic purpose only. Although there is an accessory channel to pass instruments through it, the plane at which this comes into endosonographic view is perpendicular to the cross-sectional imaging and thus prevents accurate targeting or following of the needle pathway. The other echoendoscope is known as the curvilinear Arrayechoendoscope. This also can use a water-filled balloon at the tip if required. It provides a limited view of 180 degrees surrounding the scope but has very high resolution. Passage of accessory instruments, such as fine needle or guidewires, can easily be visualized along the entire pathway of insertion until the target because it is parallel to the sonographic plane. This particular endoscope is used for FNA biopsy and interventions as described below.

Safety and complications

Major complications of EUS and EUS-FNA are rare and not much increased in comparison with standard esophagogastroduodenoscopy. The risk of perforation of the gastrointestinal tract is suggested to be 1:2500. Bleeding from FNA biopsies is usually self-limited and rarely requires intervention. The risk of introducing infection into sites of targeted FNA, such as pancreatic cysts, is also low when a prophylactic dose of antibiotics is administered. Pancreatitis has been reported in 0.29% of cases of FNA of solid pancreatic lesions. Overall, major complications from EUS-FNA have been reported at most to be 1.9%, which includes acute pancreatitis, abdominal pain, bleeding, and rarely perforation. (Eloubeidi et al., 2006) the risk of perforation is the same as routine upper endoscopy but may have a 2- to 3-fold increased risk at the site of the cervical esophagus during intubation. (Eloubeidi et al., 2009)

EUS-guided Trucut needle biopsy

Standard FNA biopsies are performed with either 22- or 25-gauge needles that offer adequate specimen for most tissue sites to achieve a diagnosis. The smaller needles are particularly useful in lymph nodes and small targets. In rare cases, a larger core biopsy is required, such as in the diagnosis of autoimmune pancreatitis or histologic diagnosis of gastrointestinal stromal tumors. In this setting, a trucut needle known as Quick-Core (Wilson-Cook, Winston-Salem, North Carolina) is available in a 19-gauge size with a spring-loaded device. Studies have shown no increased yield in routine diagnosis between the trucut needle and standard 22- and 25-gauge needles but have demonstrated its safety. (Levy et al., 2003; Varadarajulu et al., 2004) It has been shown to be more effective in the diagnosis of autoimmune pancreatitis. (Levy et al., 2005)

However, the endoscopic control of such larger needles of 19-gauge standard and 19-gauge trucut varieties is much more difficult because of the reduced flexibility. Thus, it has a limited use in transduodenal approaches to the pancreas. Moreover, some studies suggest that the smaller needles may be as effective and have increased safety. Overall, the complications from EUS-FNA are low and self-limited. These include bleeding, hematoma, and pancreatitis in up to 1% to 2% of cases and even more rarely perforation. The larger needles have been shown to result in higher risk of pancreatitis in some series. (Varadarajulu et al., 2004; Levy et al., 2003)

EUS-guided CPN

The management of pain from chronic pancreatitis or pancreatic cancer is often a challenging clinical scenario. Many of these patients depend on narcotics for pain relief with frequent escalation of doses because of tolerance to the medications. Moreover, narcotics result in adverse effects of reduced bowel and bladder motility, respiratory effects, central nervous system effects, and rebound increases in pain. For some, intravenous dosing is the only option. Pain is mediated by a plexus of nerves that arise from the celiac ganglion. These nerves originate from the spinal cord and the ganglion is located surrounding the root of the celiac and superior mesenteric arteries. Anatomically, this is located posterior to the gastric wall and omental bursa and lies between the adrenal glands. It is anterior to the diaphragmatic crus and the beginning of the abdominal portion of the aorta. Given this anatomic location, the celiac plexus region can be easily imaged by EUS. In fact, the ganglion itself is sometimes visualized as a bean-shaped hypoechoic structure or chain of structures. CPN is achieved by advancement of a 20-gauge needle into this area that is specifically designed to deliver the anesthetic medications within a wide field. In the setting of chronic pain of pancreatic malignancy, 10 to 20 mL of 98% dehydrated ethanol is injected into this area with the aim of obliterating the ganglion. It often results in scarring of the surrounding tissue. Used less commonly for chronic pancreatitis, EUS-guided CPN may be performed with injection of a combination of 40 mg triamcinolone along with 0.5% bupivacaine in a volume similar to the ethanol. Before either type of injection, 1 to 2 mL of 1% lidocaine is often injected for immediate, but temporary, pain relief and to reduce the pain of the actual injections to follow. Ethanol is not used routinely in chronic pancreatitis pain because it may result in peripancreatic and perigastric scarring, which could complicate potential surgical management. (Collins et al., 2006)

The EUS-guided technique involves injection into both sides of the celiac artery origin to surround the entire celiac plexus. Alternatively, if the ganglion is visualized, the entire quantity can be injected into this area on 1 side of the celiac artery. This is an anterior or direct approach through the gastric wall. The alternate approach to neurolysis of the celiac plexus is the posterior approach performed by anesthesiologists. Such a procedure requires fluoroscopic guidance to inject specific nerve bundles leading to the celiac ganglion in a more indirect method. Both have been suggested to have similar efficacy. However, the safety of the anterior or EUS-guided approach has been shown to be higher than the posterior approach. Some studies have reported spinal nerve injury with paraplegia and transient motor paralysis in rare cases because of spasm of segmental lumbar arteries. Rarely, permanent paraplegia has been reported because of direct neurologic or vascular injury of the injection along with retrograde spread of ethanol into the spinal cord. (Wong and Brown, 1995; vanDongen and Crul, 1991) This type of injury has not been reported by the anterior-crural or EUS-guided method. Other complications of CPN include transient orthostatic hypotension, which occurs in 1% to 3% of individuals for up to 5 days after injection and more commonly seen from the retrograde method. Transient diarrhea is noted up to a few weeks after neurolysis and has been reported to be more common from the anterior approach. Overall, the risk of serious complications (paraplegia, bowel or bladder dysfunction) is rare and was reported in a large series.
to be 1 in 683 procedures. (Davis, 1993) The efficacy of CPN has been studied extensively. In a recent meta-analysis and systemic review, EUS-guided CPN was examined in data of 8 studies of a total of 283 patients. In the pooled data, it was found that adequate pain relief was achieved in 80.12% of patients with pancreatic cancer. In patients with chronic pancreatitis, pain relief was achieved in 59.45%. (Puli et al.,) In most of these patients, there was a reduction of opiate use. The medications used in neurolysis of chronic pancreatitis patients were most often bupivacaine and triamcinolone compared with ethanol in pancreatic cancer, which some have theorized accounts for this difference. However, many studies have demonstrated that CPN is more effective for control of pain from pancreatic cancer than pancreatitis, especially in palliative care.

Pancreatic pseudocyst drainage

Pancreatic pseudocysts develop in the setting of either acute or chronic pancreatitis. These fluid-filled cavities are non–epithelial-lined cysts that usually occur from disruption of the pancreatic duct with leakage of pancreatic fluid into surrounding tissues. Some pseudocysts occur as a result of pancreatic duct obstruction or pancreatic trauma. These can be of varying sizes and can extend great distances from the pancreas itself into the abdomen and even the mediastinum. Serious complication of pain, gastric or duodenal luminal obstruction, bile duct obstruction, infection, and bleeding from internal or adjacent pseudoaneurysms may occur. (Habashi and Draganov, 2009) Management of these cysts varies considerably. Many cysts that complicate acute pancreatitis resolve spontaneously within 4 to 6 weeks and may be conservatively treated. Others that exceed 5 to 6 cm in size and persist beyond 6 weeks will almost always require intervention. (Pitchumoni and Agrawal, 1999) Surgical drainage has been the mainstay of therapy for decades for cysts exceeding 6 cm and involves direct cyst excision or creation of drainage into a loop of jejunum. This has a 5% mortality rate but may be reduced with laparoscopic approaches or those who can be managed electively rather than semi-urgently. (Barthet et al., 1993)

Percutaneous drainage is sometimes performed by interventional radiologists. However, experience has suggested that this can be fraught with complications such as skin discomfort, infection, accidental displacement, or removal of catheter and the formation of long-term cutaneous fistula after drainage removal. (Van Sonnenberg et al., 1989) Endoscopic drainage has been performed for more than a decade. However, more recently, the use of EUS-guided endoscopic drainage has proven to be as successful as surgical therapy and is now considered a first-line treatment. The use of EUS helps identify the optimal site of puncture from the gastric wall into the cyst. Ideally, this distance should be 1 cm. It also helps identify potentially intervening blood vessels. Before EUS, transmural endoscopic drainage of pseudocysts required the identification of a bulge. However, current techniques of EUS-guided cyst drainage can be performed across either the gastric or the duodenal wall and do not require a visible bulge. Infected pseudocysts and abscess are also able to be drained by this method. (Barthet et al., 2008; Aghdassi et al., 2008)

The specific interventional techniques of EUS-guided pseudocyst drainage can be performed entirely through the therapeutic channel of the linear-array echoendoscope. The pseudocyst is identified and an optimal site of puncture is visualized as above. Once fluid is accessed and a sample sent for necessary studies, such as Gram stain or culture, a 0.035-inch guidewire is inserted into the cyst under fluoroscopic guidance into a coiled pattern. Over this wire, the tract is opened first with an endoscopic needle-knife and followed by dilation to approximately 8 mm with a balloon dilator. Multiple double pig-tailed stents, one of which is at least 10-Fr size, are positioned with 1 end in the cyst and the other secured in the gastric lumen. This is usually left intact for approximately 6 to 8 weeks and removed once the pseudocyst has collapsed completely. The cause of pseudocyst formation is usually from pancreatic ductal disruption. Traditionally, cholangiography by ERCP with stenting was performed to help with drainage. However, more recently, transmural drainage alone has been shown to be sufficient, and thus cholangiography can usually be performed when the EUS-guided drainage fails. Primary pancreatic duct stenting may not improve rates of cyst resolution compared with transmural cyst drainage with stent placement. (Curry et al., 2009)

EUS-guided access to Biliary tract

EUS-guided cholangio-pancreatic drainage has been reported in the setting of failed ERCP cannulation of the papilla. This is an alternative access method to surgical or percutaneous approaches. The ampulla may be obstructed by tumor at the site.

Therapeutic Endoscopic Ultrasound of the duodenum, or distal bile duct, or ampulla itself. ERCP may also fail in certain circumstances of tight stricture, severe duct angulation, or ductal infiltration by tumor. Traditionally, drainage can be attempted percutaneously by interventional radiology. However, it may also be technically difficult to reach the distal bile duct or ampulla in certain cases. Moreover, external drainage may require internalization for long-term management. Permanent external drainage may be uncomfortable for patients requiring palliative care. ERCP can be performed to fail in 3% to 12% of such cases, despite multiple attempts, and thus other endoscopic options are necessary. (Schoff, 2001) Visualization of the bile duct by EUS offers transhepatic or transduodenal access with cannulation across the papillae from an antegrade route. The left hepatic ducts are easily visualized by EUS and thus a transgastric approach to the left biliary system can be an alternative. A guidewire can be passed into the bile duct and confirmed by fluoroscopy. Over the guidewire, catheters may be applied to inject contrast and perform a cholangiogram to define the point of obstruction. Subsequently, a rendezvous procedure from the duodenum, using a guidewire that crosses the ampulla, can be accomplished. This enables placement of standard ERCP instruments, including plastic and metal stents, into the bile duct. Similarly, access to a dilated pancreatic duct can be achieved by EUS guidance. This is accomplished from transgastric puncture and passage of a guidewire in antegrade fashion to traverse the papilla. The pancreatic duct must be dilated for access and usually is dilated proximal to the stricture or point of obstruction. (Shami and Kahaleh, 2007)

In a study of EUS-guided bile duct drainage, 11 patients were examined with obstructive jaundice. Malignant obstruction was noted in 8 patients (4 pancreatic carcinoma, 2 hilarcholangiocarcinoma, 1 duodenal cancer, and 1 gastric cancer). Benign obstruction was found in the remaining 3 patients with anastomotic strictures after Whipple resection. In all patients, both ERCP and percutaneous approaches failed. In
In another study, the feasibility of EUS-guided rendezvous drainage of biliary and pancreatic ductal obstruction was demonstrated. In 6 patients, ERCP had failed to cannulate the major papillae during multiple attempts on separate occasions. EUS guidance was attempted to provide transgastric or transduodenal needle puncture and guidewire placement through the obstructed pancreatic duct (n=4) or bile duct (n=2). In 5 of 6 patients, the obstruction was successfully traversed and rendezvous ERCP was subsequently performed with stent placement in 3 of 6 cases (2 biliary and 1 pancreatic). The 1 patient who failed had relapsing pancreatitis with pancreas divisum. No complications were noted in any of the patients. No evidence of pancreatitis or duct leakage was encountered in any of the successful or unsuccessful cases. (Mallery et al., 2004) These studies show the feasibility of EUS-guided drainage of pancreatic or bile duct obstructions in the setting of failed ERCP access. The advantage of real-time imaging with sonography combined with fluoroscopy can achieve access in these difficult circumstances. In certain cases of altered surgical anatomy of the duodenum or ampulla, EUS offers high-resolution imaging of the biliary and pancreatic ductal systems with direct access to achieve immediate internal drainage. Although these circumstances are difficult in general for endoscopic or percutaneous drainage, EUS is rapidly evolving into a technique that can offer therapeutic access in circumstances that would otherwise require surgical intervention. This is particularly useful in palliative relief of ductal obstruction.

EUS-FNI therapy

A natural evolution of EUS-FNA biopsy is the direct application or delivery of therapeutic agents or medications to a target site such as a tumor. The ease of access with high-resolution real-time images to both large and small targets offers the ability to inject medications or deliver therapeutic devices to these sites. This has been termed fine-needle injection therapy.

Radiosensitization by TNFerade

A current multicenter phase II/III trial is being conducted in which human tumor necrosis factor (TNF) is injected into locally invasive, inoperable pancreatic adenocarcinoma. TNF is a cytokine that is secreted by several normal and tumor cells and is heavily responsible for antitumor immunity. It also plays a major role in inflammation and tumor angiogenesis. Systemic TNF-has been studied in human clinical trials but has been limited by significant toxicity. The mechanism of action of TNFerade (Genvec, Gaithersburg, MD) injection into the tumor by EUS-guided delivery is deemed to be enhanced sensitivity of the tumor to radiation therapy. (Mauceri et al., 2009) In this study, 5 weekly injections of TNFerade are delivered into locally advanced pancreatic tumor by EUS-FNI. This is followed by combined chemoradiation therapy, including 5-fluorouracil and gemcitabine. (Chang et al., 2008) Results are still pending completion of the trial.

Activated T-Lymphocyte Therapy

EUS-FNI therapy with delivery of antitumoral therapy has been demonstrated previously with advanced pancreatic adenocarcinoma. In a phase I trial, 8 patients with unresectable adenocarcinoma were enrolled. The delivery of cytoimplants composed of allogeneic mixed lymphocyte cultures was examined in a feasibility and safety evaluation. There were no procedure-related complications. Some had reversible fever and hyperbilirubinemia. Two patients had partial responses, and the median survival was 13.2 months. This study demonstrated the safety of cytoimplant immunotherapy by EUS-FNI guidance. (Chang et al., 2000)

Pancreatic Injection of Modified Virus

In another study of EUS-FNI for inoperable advanced pancreatic adenocarcinoma, feasibility and safety was demonstrated for ONYX-015. This is gene-deleted replication-selective adenovirus that preferentially replicates and kills within malignant cells. In this phase I/II clinical trial, this agent was easily delivered by EUS guidance into advanced or minimally metastatic pancreatic tumors in 21 patients during an 8-week period. Patients concomitantly received gemcitabine for the last half of the study period. Results indicated that 2 patients had partial regression of tumor, 2 patients had minor responses, 6 patients had stable disease, and 11 patients had disease progression. Despite the dismal clinical outcomes, the study did demonstrate safety and feasibility of EUS-FNI. No direct procedure-related complications were noted in any of the patients. None of the patients developed postinjection pancreatitis. This study demonstrated early on the potential to deliver antitumor agents via EUS injection needles. (Hecht et al., 2003)

EUS-Guided Ablation Therapy in the Pancreas

The use of EUS-FNI has been studied beyond the delivery of medical agents for tumor therapy. The innovation of variable devices has been tested in animal models to deliver therapies such as radiofrequency ablation or cryoablation therapy through special catheters placed by EUS guidance. The linear-array echoendoscope has evolved to have large therapeutic working channels that enable passage of a variety of devices. Clinical research has focused heavily in to oncologic applications particularly related to the pancreas. Recently, water-cooled monopolar radiofrequency ablation has been shown to be safe for application in stage III pancreatic cancer from either open or laparoscopic settings. (Wu et al., 2006) Additional cooling of adjacent tissue is required to prevent complications. (Spiliotis et al., 2007) EUS offers the advantage over percutaneous applications of realtime imaging into a target deeply located in the pancreas, which would be otherwise challenging to reach from external origins. The
precision with which EUS can measure lesions and identify surrounding structures with a 1-mm resolution may offer more controlled and directed therapies to the target and minimize damage to nontumor tissue. Recently, a new flexible bipolar hybrid ablation device has been developed that combines bipolar radiofrequency ablation with cryotechnology. This not only results in less collateral tissue damage but also reduces the efficiency of the device. However, highly effective cooling of the tissue by cryogenic gas helps potentiate the effect of radiofrequency ablation with less required current. This has been studied in a pig model in the pancreas body and tail, which are easily reached by a transgastric approach. At 1 week, 2 of 7 pigs that underwent treatment had histologic evidence of pancreatitis, although only 1 had clinical symptoms. At 2 weeks, none of the pigs had ongoing adverse events, and laboratory tests were normal. Furthermore, a sharp demarcation was noted between the treated and untreated areas. This study showed the safety of this device with a 7% major complication rate, which included symptomatic necrotic pancreatitis, although the mortality was zero. (Hines-Peralta et al., 2004) It is theorized that the pancreatic injury is dose dependent and may be increased with multiple treatments to the same site. This is the first report of an endoscopic ablation system using a combined radiofrequency and cryotechnology ablation under real-time guidance. This suggests great potential for future device development and applications. (Carrara et al., 2008)

High-Intensity Focused Ultrasound Therapy

High-intensity focused ultrasound (HIFU) has been described as having thermal, chemical, and mechanical effects in a variety of tumors. These tumor cells are more thermosensitive than normal cells. (Lubbe and Bergemann, 1994) The endoscopic application of this principle has been tried in a canine rectal pseudotumor model to determine the potential of rectal tumor ablation with mixed results and is still evolving. (Wiersema et al., 1993) In other studies using rabbits, a transducer was created that was mounted to a standard duodenoscope and used application of HIFU to the liver through a gastrostomy. This showed the potential of small transducers and their applications with an endoscope. The application of HIFU revealed well-defined lesions of coagulation necrosis that formed within target sites of the left hepatic lobe. (Prat et al., 1997) As a natural progression of this technology, a pilot study was conducted with a flexible catheter and an ultrasound transducer that could be placed over a guidewire into the bile duct. Ten patients with intra- or extrahepatic bile duct or ampullary tumors were treated with intraductal HIFU. Of these, 4 patients had partial response, and 1 had complete resolution of the cholangiocarcinoma. These applications are still preliminary and require further study and longer follow-up. (Prat et al., 2002)

Ethanol Ablation of Pancreatic Cysts

EUS-guided injection of alcohol is another approach that has been tried for local tumor ablation. This has been shown anecdotally to have a partial response in solitary hepatic metastasis and ablation of gastric stromal cell submucosal tumors. (Barclay et al., 2002; Gunter et al., 2003) Alcohol has been used in many other clinical applications, such as therapy of kidney, hepatic, or thyroid cysts. Recently, studies have demonstrated feasibility of alcohol injection into pancreatic mucinous cysts to slow or arrest growth and avoid surgical resection. This was initially developed by Brugge et al who studied 25 patients with pancreatic cysts that were presumed to be mucinous or malignant cysts based on an elevated cyst fluid carcinoembryonic antigen level with a mean of 5916 ng/mL. The contents of cysts were evacuated by EUS-needle aspiration and subsequently lavaged with ethanol for 3 to 5 minutes and aspirated once again. The procedure was well tolerated without pancreatitis, symptoms, or other complications in the short- and long-term follow-up. It was found that 8 patients (35%) had complete resolution of their cysts. Moreover, the feasibility and safety of EUS-guided ethanol lavage of mucinous pancreatic cysts were demonstrated. (Gan et al., 2005) Further studies have suggested that macrocystic pancreatic lesions between 1 to 5 cm that are known to be mucinous cystic neoplasms have a high rate of resolution after combined saline and ethanol lavage and ablation. A randomized prospective trial is underway to determine the efficacy and indications of such therapy. (Brugge, 2008) In another recent application of EUS-guided pancreatic cyst ablation, the combination of ethanol and paclitaxel injection has been studied. These investigators studied this therapy in 14 patients with pancreatic cystic neoplasms, presumed to be of mucinous type. One patient developed postinjection pancreatitis and another developed hyperamylasemia and abdominal pain, which were self-limited. Complete resolution of the cysts was noted in 11 of 14 patients, with 2 patients having reduction in volume, suggesting a partial response. This is a small series that requires further follow-up in a larger group. (Oh et al., 2008) These studies demonstrate potential ablation of cystic neoplasms by minimally invasive EUS-guided therapy that may preclude surgical intervention, particularly in the head or uncinate process of the pancreas that would otherwise require a major operation, such as a Whipple resection. Some small series have been performed in animal models to treat small neuroendocrine tumors with injection therapy to avoid major pancreatic surgery. The potential of EUS-guided therapy has yet to be tested in many similar circumstances in human trials.

EUS-Guided Brachytherapy

The delivery of radiation to specific targets of tumor tissue can be challenging to avoid damage to surrounding nontumor tissue. Delivery of radiation to specific sites has been achieved by implanting radioactive seeds into the tumor and externally activating them in a controlled manner. This form of brachytherapy has been shown to be possible by EUS guidance Therapeutic Endoscopic Ultrasound as well. In a Chinese study of human patients, pancreatic adenocarcinoma was treated with placement of Iodine-125 brachytherapy seeds through a special delivery catheter under EUS visualization and access. Two patients had regression of tumor, whereas 6 patients had stable tumor. In a follow-up study, 15 patients were similarly treated and found at a mean follow-up of 4.5 months to have a 27% rate of tumor regression, 20% minimal response, and 33% stable tumor size. However, overall survival benefit has not been demonstrated and requires further study. (Jin et al., 2008) Nevertheless, the potential for brachytherapy by EUS-guidance has been shown to be feasible.

Other Applications of EUS-Guided Therapy

Several animal studies have been used to create endoscopic gastrojejunal anastomosis under direct EUS visualization.
Swain et al have developed a through-the-scope suturing device that can target 5 cm depth from the tip of the echoendoscope to precisely located targets. Through the standard 2.8-mm therapeutic channel of the EUS scope, incisions of the bowel, grasping of other bowel loops, suturing, knot-tying, and cutting of suture have been accomplished. This has been shown to approximate the stomach to adjacent bowel or gallbladder. (Fritscher-Ravens et al., 2002) Such work demonstrates the potential for EUS-guided gastrojejunosotomy in the treatment of obesity or gastric outlet obstruction. EUS has excellent visualization of blood vessels by using Doppler flow technology. Some studies have shown, in a live porcine model, the potential to cannulate the thoracic or abdominal aorta to use contrast angiography and clearly opacify vessels, including the celiac axis, superior mesenteric artery, splenic artery, portal vein, and hepatic veins. Injection therapy of feeding vessels into peripancreatic arterial pseudoaneurysms has been successfully demonstrated in humans by EUS-guided injection of thrombin. (Robinson et al., 2007) Therapy with cyanoacrylate injection into vessels, including gastric varices, for refractory gastrointestinal bleeding has also been demonstrated. (Romero-Castro et al., 2007)

Summary

Interventional procedures seem to be the next logical step in the evolution of EUS. This unique technology offers direct access to a variety of sites that may not be easily reached otherwise. Once a needle can reach a target with high-resolution real-time imaging, delivery of agents and instruments to this site is often easily achieved. Guidewire placement into ducts or vessels can further improve access to these sites endoscopically. Remarkable advances have been made in the type of devices and their applications that can be used with EUS. Over the past decade, the imaging of EUS has become well established in its clinical impact on sampling lesions within and surrounding the gastrointestinal tract and related organs. The future of this technology is already here with many therapeutic applications. The next decade will likely show substantial progress in EUS-guided therapeutic endoscopic interventions and their application in clinical gastroenterology. EUS has yet to see its full potential in therapeutic applications and offers an exciting period to gastrointestinal endoscopy.

REFERENCES
