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INTRODUCTION 
 
Zadeh [10] introduced the concept of sets in 1995. The notions 
ofQ-fuzzyideal and anti-fuzzy N-subgroup of a near
introduced by Kim, Jun and Yon [Kuyng, 2005; 
In this paper, we introduce thenotion of aanti
ideal of a near-ring We establish that every anti
subgroup or anti-fuzzy left ideal of a near-ring is aanti
strong bi-ideal of a near-ring and also we establish that every 
left permutable fuzzy right N-subgroup or left permutableanti
fuzzy right ideal of a near-ring is aanti-fuzzy strong bi
a near-ring. But the converse is not necessarily true as shown 
by an example. Further, we discuss the properties of anti
strong bi-ideal of a near-ring and provide example. Throughout 
this paper N will denote a right near-ring 

specified. 
 
2. Preliminaries  
 

Definition: 2.1 
 
A nonempty set N together with t w o  binary o
and “” is called be a near-ring [Gunter, 1983
following axioms: 
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Zadeh [10] introduced the concept of sets in 1995. The notions 
subgroup of a near-ring were 

2005; Liu, 19824]. 
In this paper, we introduce thenotion of aanti-fuzzy strong bi-

that every anti-fuzzy left N-
ring is aanti-fuzzy 

ring and also we establish that every 
subgroup or left permutableanti-

fuzzy strong bi-ideal of 
ring. But the converse is not necessarily true as shown 

by an example. Further, we discuss the properties of anti-fuzzy 
ring and provide example. Throughout 

ring unless otherwise 

binary operations “+” 
, 1983] if it satisfies the 
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 (N,+) is a group. 
 (N,) is a semi group. 

 (x + y)z=(xz)+yz, for e

 
Note: 2.2   
  
 Let X beanear-ring. Given

= {ab/aÎA,bÎB}. Also

“”AB = {a(b+i)–ab/a,b

 (ii) 0x = 0. In general x0 
 
Definition: 2.3 
 
A near-ring N is called zero-symmetric
N. 
 
Definition: 2.4 
 
A subgroup A of (N,+) is called a
ANA∩(AN)AA. 
 
Definition: 2.5 
 
An element aÎN is said to be

aba, for somebÎN 
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-fuzzy strong bi-ideal of a near-ring. 
We have discussed some of their theoretical properties in detail and obtain some characterization.  
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every x, y, zÎN. 

en two subsets A and B of X, AB 

Also we define another operation 
bÎA,iÎB}. 

0x = 0. In general x0  0, for some x in N. 

symmetric, if x0 = 0, for all x in 

called a bi-ideal of near-ring N if 

e r egular if for each aÎN, a = 
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Definition: 2.6 
 
A near-ring N is said to be left permutable near-ring if 
abc = bac, for all a,b,c in N. 
 
Definition: 2.7 
 
A function A from a non-empty set X to the unit interval [0,1] 
is called a fuzzy subset of  N [14]. 
 
Notation: 2.8 
 
Let A and B be two Q-fuzzy subsets of a semi group N. We 
define the relation between A and B, the intersection and 
product of A and B, respectively as follows: 
 

 (i)A B if A(x,q) B(x,q), for all xÎN and qÎQ, 

 (ii) (AB)(x,q) = min{A(x,q), B(x,q)}, for all xÎN and 

qÎQ, 

   
 
It is easily verified that the “product” of fuzzy subsets is 
associative. Throughout this paper, N will denote a near-ring 
unless otherwise specified. We denote by kI the characteristic 
function of a subset I of N. The characteristic function of N is 
denoted by N, that is, N : NQ [0,1] mapping every element 
of N to1.  
 
Definition: 2.9 
 
A function A: NQ [0,1] is called a Q-fuzzy set. 
 
Definition: 2.9 
 
A Q-fuzzy subset A of a group (N,+) is said to be a Q-fuzzy 
subgroup of N if for all x,yÎN and qÎQ, 
 

 A(x+y, q)  min{ A(x, q) , A(y, q) } 

 A(-x, q) = A(x, q), 
 

Or equivalently A(x – y, q)  min{A(x, q) , A(y, q)}. 
 
Note: 2.10 
 
If A is a Q-fuzzy subgroup of a group N, then A(0, q)  A(x, q) 
for all xÎN and qÎQ. 
 
Definition: 2.11 
 
A Q-fuzzy subset A of N is called a Q-fuzzy subnear-ring of N 
if for all x,yÎN and qÎQ 
 

 A(x – y, q)  min{A(x, q) , A(y, q)} 

 A(xy, q) = min{A(x, q) , A(y, q)} 
 
Definition: 2.12 
 
A Q-fuzzy subset A of N is said to be a Q-fuzzy two-sided N-
subgroup of N if 
 

 A is a Q-fuzzy subgroup of (N,+), 

 (ii)A(xy, q)A(x, q), for all x,yÎN and qÎQ, 

 A(xy, q)A(y, q), for all x,yÎN and qÎQ. 

 If A satisfies (i) and (ii), then A is called a Q-fuzzy right 
N-subgroup of N. If A satisfies (i) and (iii), then A is 
called a Q-fuzzy left N-subgroup of N.  

 
Definition: 2.13 
 
A Q-fuzzy subset A of N is said to be a Q-fuzzy ideal of N if 
 
 

 A is a Q-fuzzy subnear-ring of N, 

 A(y+x-y, q) =A(x, q), for all x, yÎN and qÎQ, 

 A(xy, q)A(x, q), for all x, yÎN and qÎQ, 

 A( a(b+i)–ab, q)A(i, q), for all a, b, i,ÎN and qÎQ. 
 
If A satisfies (i) and (ii) and (iii) then A is called a Q-fuzzy 
right ideal of N. If A satisfies (i), (ii) and (iv), then A is called 
a Q-fuzzy left ideal of N. In case of zero-symmetric, If A 

satisfies (i), (ii) and A(xy, q)A(y, q), for all x, yÎN, qÎQ and 
A is called a Q-fuzzy left ideal of N. 
 
Q-Fuzzy Bi-ideals of Near-Rings 
 
Definition: 3.1.1 
 
A Q-fuzzy subgroup A of N is called a Q-fuzzy bi-ideal of N if 
for all xÎN and qÎQ, ((AᵒNᵒA)∩(AᵒN)A))(x, q) ≤ A(x, q) 
 
Example: 3.1.1.1 
 
Let N= {0,a,b,c} be the Klein’s four group. Define 
multiplication in N as follows: 
 
 
 
 
 
 
Then (N,+, ) is a near-ring (see([25], p.407, scheme 4). We 
define an Q-fuzzy set A in N as follows: A(0, q) = 0.8, A(a, q) 
= 0.6, A(b, q) = 0.3 = A(c, q). Then (AᵒNᵒA)(0,q) = 0.3, 
(AᵒNᵒA)(a, q) = 0.3, (AᵒNᵒA)(b, q) = 0.3,(AᵒNᵒA)(c, q) 
= 0.3. Therefore A is aQ-fuzzy bi-ideal of N. 
 
 
 
 
 
 
 
 

Example: 3.1.1.2 
 

Let N={0,a,b,c} be the Klein’s four group. Define 
multiplication in N as follows: 
 

Then (N,+, ) is a near-ring (see([25], p.407, scheme 4). We 
define an Q-fuzzy set A in N as follows:  (AᵒNᵒA)(b, q) = 
0.7,(AᵒNᵒA)(c, q) = 0.2. Here (AᵒNᵒA)(a, q) = 0.7≮
A(0, q) 	= 	0.3 . Hence A is not a Q-fuzzy bi-ideal of N.  
 

Theorem: 3.1.3 
 

Let {Ai iÎI} be any family of Q-fuzzy bi-ideals in a near-ring 
N. Then  
A = 	A��∈�

∩ is a Q-fuzzy bi-ideal of N, where I be an index set. 

+ 0 a b  c 
  0 0 a b c 
 a a 0 c b 
b b c 0 a 
c c b a 0 

   

 0 a b c 

0 0 0 0 0 
a 0 0 a 0 
b 0 0 b 0 
c 0 0 c 0 

  +  0 a b c    0 a b c 

  0  0 a b c    0  0 0 0 0 

  a  a 0 c b    a  0 0 a 0 

  b  b c 0 a    b  0 0 b 0 

  c  c b a 0    c  0 0 c 0 
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Proof: 
 
Let {Ai iÎI} be any family of Q-fuzzy bi-ideals of N. Now for 

all x, yÎN,	and	qÎQ	, 
      A(x – y, q) = inf Ai(x – y, q)  
inf{min{Ai(x, q), Ai(y, q) / i ÎI}} 
(since Ai is a Q-fuzzy subgroup of N) 
= min{inf Ai(x, q),inf Ai(y, q) / iÎI} 
= min{ 	A��∈�

∩  (x, q), 	A��∈�
∩ (y,q)} 

= min{A(x, q), A(y, q)} 
This implies A(x – y, q) min{A(x, q), A(y, q)} 
 
Therefore A is a Q-fuzzy subgroup of N. 

Now for all xÎN, and qÎQ, Since A = 	A��∈�
∩  , for every iÎI, 

we have 
 
((AᵒNᵒA)∩(AᵒN)A)) (x, q) ≤ ((AiᵒNᵒAi)∩(AiᵒN)Ai)) (x, q) 

≤ Ai(x, q) for every iÎI. 
 
(SinceAi is a Q-fuzzy bi-ideal of N) 
 
It follows that 
 

((AᵒNᵒA)∩(AᵒN)A)) (x, q) ≤ inf{Ai(x, q) : iÎI} = ( 	A��∈�
∩ ) 

(x,q) = A(x,q) 
Thus ((AᵒNᵒA)∩(AᵒN)A)) (x, q) ≤ A(x, q). 
 
Hence A is a Q-fuzzy bi-ideal of N. 
 
Theorem: 3.1.4 
 
Let A be any Q-fuzzy bi-ideal of a near-ring N. Then A (xay, 
q)  min{A(x, q), A(y, q)} for all x, y ÎN and qÎQ. 
 
Proof 
 
Assume that A is a Q- fuzzy bi-ideal of a near-ring N.  
Then we know that (ANA) (a, q) ≤ A(a, q) . 
Let x, a, y be any elements of N and qÎQ. Then 
A (xay, q)  (ANA) (xay, q) 

  = min	{(A���	�	����

���
N)(x1, q), A(x2, q)} 

min{(AN)(xa, q),A(y, q)} 

= min� 	min	{A(z�, q), �(z�, q)}, A(y, q)��	�	����

���
� 

min{min{A(x, q), N(a, q)}, A(y, q)} 
= min{min {A(x, q), 1}, A(y, q)} 
= min{A(x, q), A(y, q)} 
This shows that A(xay, q)  min{A(x, q), A(y, q)}. 
 
Theorem: 3.1.5 
 
Let N be a regular near-ring. If A be any Q-fuzzy b-ideal of N, 
then  
 
A(a, q)  = (ANA)(a, q). 
Proof 
 
Let A be a Q-fuzzy bi-ideal of N and ‘a’ be any element of N 
and qÎQ. Since N is regular, there exists an element x in N 
such that a = axa, we have 
 
(ANA) (a, q) = (ANA) (axa, q) 

  = min	{(	A����	����

���
N)(	x�, q),A(x�, q)} 

min{AN)(ax, q), A(a, q)} 

 = min� 	min	{A(y, q), �(z, q)}, A(a, q))��	�	��
���

� 

min{min{A(a, q), �(x, q)}, A(a, q)} 
= min{min {A(a, q), 1}	, A(a, q)} 
= A(a, q) 
 
This shows that (ANA)(a, q)  A(a, q).  
Since A is a Q-fuzzy bi-ideal of N, we have (ANA)(a, q) ≤ 
A(a, q).  
 
Therefore A (a, q) = (ANA)(a, q). 
 
3.2 Q-fuzzy strong bi-ideals of Near-Rings 
 
 
§3.2We shall now give the precise definition of a Q-fuzzy 
strong bi-ideal and illustrate this concept with suitable 
examples. 

 
 
 
 
 
 
 
Definition: 3.2.1 
 
A Q-fuzzy bi-ideal A of N is called a Q-fuzzy strong bi-ideal 
of N if  
 
(NAA)(a, q)≤ A(a, q). 
 
Example: 3.2.1.1 
 
Let N={0,a,b,c} be a near-ring with two binary operations 

‘‘’’ and ‘‘•’’ is defined as follows. 
 
 
 
 
 
 
 
 
Then (N,+, ) is a near-ring (see([25], p.407, scheme 4). We 
define a Q-fuzzy set A in N as follows: A(0, q) = 0.8, A(a, q) = 
0.6, A(b, q) = 0.3 = A(c, q). Then (AᵒNᵒA)(0,q) = 0.3, 
(AᵒNᵒA)(a, q) = 0.3, (AᵒNᵒA)(b, q) = 0.3,(AᵒNᵒA)(c, q) 

= 0.3, (NAA)(0, q) = 0.3, (NAA)(a, q) = 0.3,(NAA)(b, q) 

= 0.3, (NAA)(c) = 0.3. Hence A is a Q-fuzzy strong bi-ideal 
of N.  
 
Remark: 3.2.2 
 
Every Q-fuzzy strong bi-ideal is a fuzzy bi-ideal but the 
converse is not true. 
 
Example: 3.2.2.1 
 
Let N={0, 1, 2, 3} be the Klein’s four group. Define 
multiplication in N as follows: 
 
Then (N,+, ) is a near-ring (see([25], p.407, scheme 11). We 
define an Q-fuzzy set A in N as follows: A(0, q) = 0.9, A(1, q) 

  +  0 1 2 3     0 1 2 3 

  0  0 1 2 3     0  0 0 0 0 

1 1 2 3 0   1  0 1 2 3 

 2 2 3 0 1   2  0 2 0 2 

3  3 0 1 2   3  0 3 2 1 

  +  0 a b c    0 a b c 

  0  0 a b c    0  0 0 0 0 

  a  a 0 c b    a  0 0 a 0 

  b  b c 0 a    b  0 0 b 0 

  c  c b a 0    c  0 0 c 0 
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= 0.7 = A(2, q) , A(3, q) = 0.4. Then (AᵒNᵒA)(0, q) = 0.9, 
(AᵒNᵒA)(1, q) = 0.7, (AᵒNᵒA)(2, q) = 0.7,(AᵒNᵒA)(3, q) 

= 0.4 Clearly A is a Q-fuzzy bi-ideal ofN. Also (NAA)(0, 

q) = 0.9, (NAA)(1, q) = 0.7,(NAA)(2, q) = 0.4, (NAA)(3, 
q) = 0.7≰ A(3, q) = 0.4. Therefore A is not aQ-fuzzy strong 
bi-ideal ofN. 
 
Theorem: 3.2.3 
 
Let N be a strongly regular near-ring. If A be any Q-fuzzy 
strong bi-ideal of N, then A = NAA. 
 
Proof 
 
Let A be a fuzzy strong bi-ideal of N and ‘a’ be any element of 
N. Then since N is strongly regular, there exists an element x 
in N such that a = xa2, we have 
(NAA) (a, q) = (NAA) (xa2,q) 

= 	min{(N ∘ A)(x�, q), A(x�, q)}���	�����

���
 

min{(N ∘ A)(xa, q), A(a, q)} 

=  min� min{N(y, q), A(z, q)��	�	��
���

�,	A(a, q)} 

min{min{N(x, q), A(a, q)}, A(a, q)}} 
= min{min{1,A(a, q), A(a, q)}} 
= A(a, q). 
 
This means that NAAA. Since A is a Q-fuzzy strong bi-
ideal of N, we have NAAA. Thus we have A = NAA. 
 
Theorem: 3.2.4 
 
Let R and L be a Q-fuzzy right N-subgroup and a Q-fuzzy left 
N-subgroup of N respectively. If A is any Q-fuzzy subgroup of 
N such that L∘ R A LR, then A is a Q-fuzzy strong bi-
ideal of N. 
 
Proof: 
 
Assume that A is a Q-fuzzy subgroup of N, such that L∘ R 
A LR. Then NAAN∘ (LR) ∘ (LR)  N∘L∘R   
(Since LR R and LR  L)  L∘R (Since N∘L  L)  A. 
This implies that NAAA. And hence A is a Q-fuzzy strong 
bi-ideal o N. 
 
Theorem: 3.2.5 
 
Let N be a strongly regular near-ring. Then AB = A∘ B ∘B 
holds for every Q-fuzzy two-sided N-subgroup A of N and 
every Q-fuzzy strong bi-ideal B of N. 
 
Proof 
 
Let A be a Q-fuzzy two-sided N-subgroup and B be a Q-fuzzy 
strong bi-ideal ofN respectively, we have A∘ B ∘ B N∘ B ∘B 
B. Then A∘ B ∘ B A∘ � ∘NA∘NA.  
 
 
 
 
 
 
 
 

Thus A∘ B ∘B AB. To prove the reverse inclusion, assume 
that ‘a’ be any element of N. Since N is strongly regular, there 
exists an element x in N such that a = xa2  = (xaxa2) = xxa2xa2. 
Since A is a fuzzy two-sided N-subgroup of N, we have A(xxa, 
q)  A(xa, q)A(a, q). Since B is a fuzzy strong bi-ideal of N, 
we have B(a, q) = B(xa2, q)  min{B(a, q), B(a, q)} = B(a, q).  
 
Then 
 

(A∘ B ∘ B)(a,q) = 	min{� ∘ B)(b, q), B(c, q)}�	�	��
���

 

 = min{	 	min{A(b�, q), B(b���	����

���
, q)}, B(c, q)}����

���
 

min{(� ∘ B)(x2a2, q), B(xa2, q)} 
= min{  min{A(b�,q), B(b�x2a2 = b1b2

sup
,q)}, B(xa2,q)} 

 min{min{A(xxa,q), B(a,q)}, B(xa2,q)} 
min{min{A(a,q), B(a,,q)}, B(a,q)} 
= min{A(a,q), B(a,q)} 
= (AB)(a,q)  
And so A∘ B ∘ B AB 
Thus AB = A∘ B ∘ B. 
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