

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 10, pp.59762-59765, October, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

DESIGN AND IMPLIMENTATION OF ALU BY USING GDI TECHNIQUE IN 45 NM TECHNOLOGY

^{1,*}Uma Divya, A. and ²Lakshmi Priya, K.

¹M. Tech, SSN Engineering College, Ongole ²Associate Professor, SSN Engineering College, Ongole

ARTICLE INFO	ABSTRACT
Article History: Received 19 th July, 2017 Received in revised form 20 th August, 2017 Accepted 29 th September, 2017 Published online 31 st October, 2017	With increasing contribution of performance of digital circuits is judged by its speed, run-time leakage control techniques are becoming extremely important. The most common technology for designing digital circuits is the CMOS technology. After the development of CMOS logic, there was increasing need to optimize circuits in terms of speed. One technique thought was using PTL which makes use of lesser number of gates to realize an operation. The Pass-Transistor Logic (PTL) is a better way to implement circuits designed for low power applications. Although PTL has
<i>Key words:</i> Gate Diffusion Input, Arithmetic Logic Unit, Pass Transistor Logic, Power.	disadvantages like it reduces the circuit speed at low power operations and greater static power dissipation. As the technology is growing gained the prominent importance. In this design of 1 bit ALU, GDI technology has been deliberately implemented. In this research work a new design of ALU by using GDI technique that can be used to design fast and low power circuits using lesser number of transistors. The total Design of ALU has been done by using GDI technique in 45 nm technology. The total Design process flow in Soc and the power is 0.044.

Copyright©2017, Uma Divya and Lakshmi Priya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Uma Divya, A. and Lakshmi Priya, K. 2017. "Design and implimentation of ALU by using GDI technique in 45 nm technology", International Journal of Current Research, 9, (10), 59762-59765.

INTRODUCTION

An Arithmetic and Logic Unit (ALU) is a digital circuit that performs arithmetic and logic operations. The ALU is a fundamental building block of the central processing unit of a computer. The power consumed by the ALU has a direct impact in the power dissipated from the processor. Hence, a design is required to implement the ALU in a fashion where the performance of the processor is improved and also the power consumed is less. To be precise Power consumption of whole data path can be reduced by reducing power consumption of ALU.

GATE DIFFUSION INPUT (GDI)

The GDI cell is similar to a CMOS inverter structure. In a CMOS inverter the source of the PMOS is connected to VDD and the source of NMOS is grounded. But in a GDI cell this might not necessarily occur. There are some important differences between the two. The three inputs in GDI are namely- 1) G- common inputs to the gate of NMOS and PMOS 2) N- input to the source/drain of NMOS 3) P- input to the source/drain of PMOS Bulks of both NMOS and PMOS

are connected to N or P (respectively), that is it can be arbitrarily biased unlike in CMOS inverter. Moreover, the most important difference between CMOS and GDI is that in GDI N, P and G terminals could be given a supply VDD or can be grounded or can be supplied with input signal depending upon the circuit to be designed and hence effectively minimizing the number of transistors used in case of most logic circuits (eg. AND, OR, XOR, MUX, etc). As the allotment of supply and ground to PMOS and NMOS is not fixed in case of GDI, therefore, problem of low voltage swing arises in case of GDI which is a drawback and hence finds difficulty in case of implementation of analog circuits.

FUNCTIONALITY OF GDI

The most common problem with PTL technique is its low voltage swing. An extra buffer circuitry may be used additionally to eliminate the problem of low swing and improve drivability. The problem of low swing can be understood with the help of a random function. The problem of low swing occurs only when A=0 and B=0 where the voltage level is VTP instead of 0.This occurs due to the poor high to low transition characteristics of PMOS. In the rest of the cases it provides full swing.

Fig 1. Schematic of any random function

IMPLEMENTING GDI

The below diagram shows the comparative study between GDI and CMOS for AND logic gate showing their schematics. Table1 shows the transient responses of different logic gates using GDI. Table 2 represents the delay and power-delay product results of logic circuits using GDI and CMOS showing GDI as the one with lesser delay or power-delay product

Fig. 2.1. And gate using gdi technique

Fig 2.2. Transient response of AND gate using GDI technique.

DESIGN OF ALU USING GDI TECHNIQUE

In digital system design processor is main part of the system. And an ALU is one of the main components of a microprocessor. CPU works as a brain to any system & and ALU works as a brain to CPU. So it's a brain of computer's brain. They consists of fast dynamic logic circuits and description of ALU. Fig 2 shows the RTL design of ALU components using conventional CMOS. Fig 3 shows the chip design of ALU, Fig 4 shows inside the chip design. From Fig V it shows the Timing and Power analysis for the ALU using GDI and Fig 3.10 it shows the final Logic diagram for the ALU using GDI technique in 45 nm technology.

Fig 3.1. The design of ALU by using GDI technique

RTL SCHEMATIC

In digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals. Here this RTL schematic shows the ALU using GDI.

Fig 3.1.1: RTL Schematic of ALU

CHIP DESIGN

An ASIC (application-specific integrated circuit) is a microchip designed for a special application, such as a particular kind of transmission protocol or a hand-held computer. You might contrast it with general integrated circuits, such as the microprocessor and the random access memory chips in your PC..Here it shows the ALU chip design.

Fig 3.1.2: Chip Design of ALU

INSIDE THE CHIP

Fig 3.1.3: It shows the design inside the chip

TIMING ANALYSIS

Static timing analysis is a method of validating the timing performance of a design by checking all possible paths for timing violations without having to simulate. Timing is important because just designing the chip is not enough; we need to know how fast the chip is going to run, how fast the chip is going to interact with the other chips, how fast the input reaches the output etc...Timing Analysis is a method of verifying the timing performance of a design by checking for all possible timing violations in all possible paths.

Fig 3.1.4: Timing Analysis

🕷 😏 🖄 pesiti visitan 👘	~~~		
a 100mma 100-4			
- 🗆 🖉 ×	MRTL Schematic X 📓 Resource Satimation	INTERTL Schematic (2) × 11 W	ASSO results_1 ×
Portum com met[0]_96_4_9_stat_1677, com Portum com met[0]_96_4_9_stat_1877, com met[0]_96_4_8, com met[0]_96_4_	Derice Parametere Maximum ground bounce Capacitance per surgut driver Board Forsametere Board Thicknese Timizhed vis diameter Pad to vis diameter Pad to vis present length Brackow odch	600.0 mV 15.0 pF 42.0 mile 12.0 mile 33.0 mile 12.0 mile	
ten Athbules (Correctivity)	Other PGB paraeltic inductance Bocket inductance	0.0 nH 0.0 nH	
endte_1 endte_2 2			
esults_1 -board_thickness 62 -v esults_1 -board_thickness 62 -v	ia_diaméter 13 -pad_to_via_breakout_ ia_diameter 12 -pad_to_via_breakout_	length 33 -breakout_width length 30 -breakout_width	12 -other_pob_inductance 0 -socket_inductance 0 -g 5 12 -other_pob_inductance 0 -socket_inductance 0 -g

NOISE ANALYSIS

Noise Analysis is a small signal analysis which is carried out at discrete frequencies using a linearized version of the circuit. The mechanics are very similar to those of an AC analysis

P BLOCK ANALYSIS

DOT					-1	
					3	
						v)
THE LADO	AVANALACING	Kegured 9	08			37.1
л	1920	1	÷			
a la	1920	1	1			
ICEL	480	1	1			
ICEM	-490	1	1			
SCAN	1	0	0			
FGMUX	24	0	0			
APTURE	1	0	0			
CM.	2	0	0			
DIFFINE .	52	0	0			
PFME	76	0	0			
PPS	52	0	0			
PESI	76	0	0			
UF	228	0	0			
AP	1	0	0	12		
A T 18X 18510	4	0	9			
CTLOGICOP	2	0	9			
HV	1	0	9			
AME 16			0			erore grese resources are not shown.
IN CRUSSES	340		9			
TARTIE			0			
CC.	342	0	0			
lock Report						
Iomain Module	Resource	e Instances				
k(ortaki con)	Local		1		. D	
a anna ann 1						
3 Statistics						
a Benter i Ben	and some in	and an other states				
OFUTE DO	and the states	(and a state of the		U	81 H	
2	66 .	10.6 %			31	
eral Statist	ics Instance	Rectangles	Attributes			
Company of the owner of the owner.						

TOTAL POWER ANALYSIS:

Power analysis is an important aspect of experimental design. It allows us to determine the sample size required to detect an effect of a given size with a given degree of confidence. Here the total power it used is 0.044W.

A Desce Faceto	0 Scientific Inc.	6 0 00000	E F	Unit Art	H- 1921	State State	Trans Clannet (5)	M N Dynamic Car Fammel (N Car	macard mod glu
Participal Term Charles	Commential	E Listage	E 000	a.	(ed 1)	Winne 2 Water 2	500 D.000 500 D.002	D 000	0.009
Summer Grant	Typecal		1.29	and the second second	COLUMN TWO IS NOT	Secto Prove	100 col	DAVANCE 01	10000
Characteriant Andrews Tar			e Prantines		47.2				
Castler 146	HALL NA	1							
Contraction of									
PRODUCTR	And a second second second second								
10	14 412.06-23.09								
	94 912.06-23.05	-							
The Powe	r Analysis is up to								
The Power	r Analysis is up to	- date. To more detailed D	NH alkaler.						
Place Power	r Analysis is up to use over the azimak	- date. To non detailed B	POM utikaatien.						
The Form The Form The Form The Form (1.e. Increase design technic the device. the device. the device. the form for 1e rr248 - Juncts	r Analyse is up to use over the asterik tes uses in order Tlease refer Tlease refer an temperatur	date. to now detailed B add a heatst to reduce t to Xilinx P ph Seconda p	NAN ukushen nik, eto.) he anount ower de: akimun silt	vable For q	rade.				
The Four There in There in the design techniq the device, nistion for 10 rides - Juncts rides - Juncts rides - Juncts	r Analysm is up to use over the antando the e air flow, i use in order Fleese refer fleese refer an rempétatur nte "gdislu_r	dain. to non dealed B to reduce t to Xilinx P m technique re exceeds p row.pcf' spen	ng, etc.) he anount twer de maximum will ed poccessi	wable for g	rade.				

Fig 3.1.7. Power Analysis

RESOURCE UTILIZATION

Amutoplever/GCN Design/GDDLUT	hyDexign planAhead_nov_2'qdiwu_re port - PanAhead 23.4
Leyout View Help	Q-
🗿 🐝 🧃 🖽 1/0 filening	- 我我会演奏先
2s100exq100-4	
X Press - D d'X Q T = 1 Press - D d'X - Press - Pre	III Projek ≥ © Deste > 10 Chill, Solenste > 20 Elit, Heardhy > 20 Eli
Regiona	
> reg Diff Par Site Bank	10 Std Vcco Wef Drive Strength Slew Type Pull Type
evalui' (3)	
Cal Pro	
natic' (3) × D-1/0 Ports in Scher	atir' (7) 🐊 Neta in Schematic' (10)
tesuits 🔁 Package Pre	

LOGIC DIAGRAM OF ALU USING GDI TECHNOLOGY

Fig 3.1.9: Logic Diagram of ALU

Comparison of simulation results of ALU using GDI and PTL

ALU Design	Using PTL	Using GDI
Power (uW)	0.000004471 W	0.044 W
Technology used (nm)	65 Nm	45 Nm

REFERENCES

- Adler, V. and Friedman, E. G. 1997. Delay and power expressions for a CMOS inverter driving a resistivecapacitive load, Analog Integrat. *Circuits Signal Processing.*, 14, pp. 29–39.
- Amit Rathi and Ritu Vijay, 2010. Optimization of MSA with Swift Particle Swarm Optimization, *International Journal* of Computer Application (IJCA), 8, December, pp. 28-33.
- Arkadiy Morgenshtein, Alexander Fish, and Israel A. Wagner, Gate-Diffusion Input (GDI: A Power-Efficient Method for Digital Combinatorial Circuits, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10 (5), OCTOBER, 2002.
- Chandrakasan, A. P., Sheng, S. and Brodersen, R. W. 1992. Low- power CMOS digital design, *IEEE J. Solid-State Circuits*, vol. 27, Apr.
- Uyemura, J. P. 1992. Circuit Design for CMOS VLSI (Norwell, MA: Kluwer Academic, pp. 88–129).
- Weste, N. and Eshraghian, K. Principles of CMOS digital design (Reading, MA: Addison-Wesley, pp. 304–307).
