INTRODUCTION

Among the Macroinvertebrates Ephemeroptera (Mayflies) are truly the ‘ballerians’ of the insect world. Ephemeroptera is an ancestral order of insects, dating from the late Carboniferous – early Permian, about 290 million years ago (Brittain, 1980; Brittain and Sartori, 2003; Barber-James et al., 2008). Mayflies have a complex life cycle, involving both aquatic and terrestrial phases. Such life cycles create evolutionary dichotomy with selection pressures operating in two, more or less independent environments (Wilbur, 1980). Mayflies are distributed in nearly all lentic and lotic water bodies and are especially abundant in rivers and streams. They contribute significantly to ecological processes (You and Gui, 1995). Mayflies are extremely important in the ecology of fresh water streams. Both immature and adult mayflies are an important part of the food web, particularly for carnivorous fish such as trout in cold water streams or bass and catfish in warm water streams. Their presence is an indication of good water quality given their sensitivity to pollution (PSERIE, 2003). Mayflies are highly susceptible to pollution and thus are important indicators of water quality.

Most mayfly species are known as sensitive to pollution (Bauernfeind and Moog, 2000). Mayflies require high quality water for their existence, thus biologists have used their presence or absence, in conjunction with the numbers present at a particular location in a stream or river, to develop several indices of water quality. Numerous studies demonstrate that mayfly community structure effectively reflects the environmental situation of water courses (Gupta and Michael, 1992; Bauernfeind and Moog, 2000, Medina and Vallania, 2001, Ogbovu and Akinya, 2001, Baptista et al., 2001, Rueda et al., 2002, Nelson and Roline, 2003). In some cases, low mayfly diversity is the result of extreme ecological conditions in the natural environment (Aagaar et al., 2004).

*Corresponding author: imtiyaztali@gmail.com, zahoor7887@yahoo.com,
Narmada river and national Highway 3 Agra- Indore – Dhule – Mumbai. It is 76 kilometer away from Indore.

Koteshwer

Koteshwer is a holy place in Barwani district of Madhya Pradesh in Central India. It is located 17 kilometer from Barwani district and 160 kilometer from Indore.

Biological Analysis

Different methods were employed to sample aquatic insects from the target habitats. The samples were collected with surber sampler at shallow profundal zone (Wetzel, 1983), various types of nets and by random sampling. The samples were preserved in 75% alcohol solution and transported to the laboratory for further investigation. In the laboratory, samples were rinsed thoroughly with pure water to remove preservative through a sieve (100 μm mesh size). Samples were then poured in a white-bottomed tray of the appropriate size for good visualisation and the sorted mayflies were then identified. Collected samples were examined under microscope (10X and above) and identified using standard taxonomic literature. Samples were assigned to a family or genus using taxonomic keys like; Dudgeon (1999); APHA (2002); Pennak (2004); Tonapi (1980), and Barber-James and Lugo-Ortiz (2003).

Physico-chemical analysis

In the analysis of the physico-chemical properties of water, standard methods prescribed in limnological literature were used. The Physico-Chemical parameters were determined as per standard methods of APHA (2002).

Statistical Analysis

The numerical relationship between the species population and whole communities often provides better reliable indications of pollution than single species (Datta and Datta 1995). These relationships are represented by “Diversity Indices”. In the present study Simpson’s Index and Shannon and Weiner diversity index (H) were used.

discussion

In the present study 17 species of Ephemeroptera (Mayflies) belonging to 6 families were recorded from river Narmada (Table 2). The population of Mayflies fluctuated in different seasons and months. The dominant family was Baetidae of which Baetis simplex was the most common species. Batidae showed high diversity almost at all sampling stations. The Mayfly diversity was maximum in post monsoon and summer and was very low in monsoon season.

Table 1. Range of variation, mean and standard deviation of water quality parameters of Narmada river during August 2009 to July 2010

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
<th>Mean±SDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>17.3</td>
<td>25.7</td>
<td>23.25±3.93</td>
</tr>
<tr>
<td>pH</td>
<td>7.3</td>
<td>9.1</td>
<td>8.18±0.53</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>6.3</td>
<td>9.1</td>
<td>7.91±0.64</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand</td>
<td>0.28</td>
<td>1.3</td>
<td>0.70±0.27</td>
</tr>
</tbody>
</table>

RESULTS

The physico-chemical parameters showed wide variations throughout the study period (Table 1). The water temperature varied between 17 °c to 35 °c. Minimum water temperature was recorded at Khalagat in January 2010 and maximum temperature was recorded at Punasa in May 2010. The value of pH varied from 7.3 to 9.1 with minimum in August 2009 at Khalagat and maximum at Punasa and Koteshwar in May 2010. The Dissolved oxygen varied between 6.3 mg/l to 9.0 mg/l. Minimum dissolved oxygen was recorded at Punasa in June 2010 and maximum dissolved oxygen was recorded at Punasa and Omkareshwar in January 2010. The biological oxygen demand varied between 0.28 mg/l to 1.30 mg/l with minimum in January 2010 at Omkareshwar and maximum at Khalagat in May 2010. The value of total hardness fluctuated between 73 mg/l to 210 mg/l. Minimum total hardness value was recorded at Punasa in October 2009 and maximum total hardness was recorded at Omkareshwar in June 2010.

minimum in August 2009 at Khalagat and maximum at Punasa and Koteshwar in May 2010. The Dissolved oxygen varied between 6.3 mg/l to 9.0 mg/l. Minimum dissolved oxygen was recorded at Punasa in June 2010 and maximum dissolved oxygen was recorded at Punasa and Omkareshwar in January 2010. The biological oxygen demand varied between 0.28 mg/l to 1.30 mg/l with minimum in January 2010 at Omkareshwar and maximum at Khalagat in May 2010. The value of total hardness fluctuated between 73 mg/l to 210 mg/l. Minimum total hardness value was recorded at Punasa in October 2009 and maximum total hardness was recorded at Omkareshwar in June 2010. In the present study 17 species of Ephemeroptera (Mayflies) belonging to 6 families were recorded from river Narmada (Table 2). The population of Mayflies fluctuated in different seasons and months. The dominant family was Baetidae of which Baetis simplex was the most common species. Batidae showed high diversity almost at all sampling stations. The Mayfly diversity was maximum in post monsoon and summer and was very low in monsoon season.

The Mayfly diversity was maximum in post monsoon and summer and was very low in monsoon season. In the present study, the value of Shannon diversity index (H) varied from 0.00 to 2.626 with minimum value in July and maximum value in September at Omkareshwar. The value of Simpson dominance index varied from 0.00 to 0.94 with minimum in July and maximum in December. The distribution of the Mayfly nymphs is dependent on the availability and distribution of preferably food items and the quality of water.

The dominant family was Baetidae of which Baetis simplex was the most common species. Batidae showed high diversity almost at all sampling stations. The Mayfly diversity was maximum in post monsoon and summer and was very low in monsoon season. In the present study, the value of Shannon diversity index (H) varied from 0.00 to 2.626 with minimum value in July and maximum value in September at Omkareshwar. The value of Simpson dominance index varied from 0.00 to 0.94 with minimum in July and maximum in December. The distribution of the Mayfly nymphs is dependent on the availability and distribution of preferably food items and the quality of water.

In the present study 17 species of Ephemeroptera (Mayflies) belonging to 6 families were recorded from river Narmada. The population of mayflies fluctuated from season to season. The mayfly diversity was maximum in post monsoon season and during summer and was very low in monsoon season. This is consistent with the observations made by Arimoro and Ikomi (2009), that numbers of taxa and the mean abundance of mayflies increased in the dry season and decreased in the wet season in the upper reaches of river Warri, Niger Delta. The diversity of mayfly nymphs was very low in monsoon season due to the heavy floods and poor water quality in the...
river. Pupilli and Puig (2003) also reported that floods especially those with a long return time can have a catastrophic effect on mayfly communities. Maldonado et al., (2001) while studying four non-Andean streams in central Venezuela reported that the rainfall to be a determining factor in the temporal fluctuation of density and composition of mayfly communities. According to Mecabre and Gotelli (2000) and Lytle (2001) that the effect of rainfall on nymph abundance is not direct but occurs by means of disproportionate and sudden rises of flow. According to Hartman et al. (2005) and Pond et al. (2008) the loss of mayfly taxa depends more on the exceptionally high chemical loading to the receiving water than on the total area of watershed disturbed.

Francis and Muller (2010) while studying mayfly community as an indicator of the ecological status of a stream in the Niger Delta area of Nigeria stated that Ephemeroptera diversity was influenced by substrate heterogeneity which in turn was influenced by catchment processes such as flooding and anthropogenic activities especially abattoir effluent. Mayfly community in streams with seasonal rainfall is affected by direct anthropogenic impacts (like source pollution) during dry season (Dudgeon 2000) and by indirect anthropogenic impacts (entropication, non-source pollution) in the wet season. In the present study, Shannon diversity index was recorded higher in post monsoon and summer months which may be attributed due to the breeding season in nutrient rich and oxygenated habitat and the diversity index was recorded lower in monsoon season which may be attributed due to the heavy floods and poor water quality. Savic et al. (2010) observed the values of Shannon diversity index (H) between 0.00 to 4.92 in river Nisava, Serbia with maximum values in the months of summer. In the present study, the value of simpson index showed wide variation. The pattern of lower Simpson’s diversity during monsoon and higher diversity values in post monsoon recorded in the present study, is in conformity with the earlier observations made by Shukla and Shrivastava (2004) at Gandhi sagar reservoir MP. Sharma and Chowdary (2011) observed the values of Simpson’s index between D= 0.00 to 0.917 in river Tawi, Jammu and Kashmir.

Acknowledgement

The financial assistance of the Department of Science and Technology, New Delhi, for the Ph. D. research of Zahoor Pir is highly acknowledged.

REFERENCES
