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INTRODUCTION 
 
In 1970, Gentry and Hoyle (Gentry, 1970) 
studied the new class of functions called c
functions. Latter, in 1974 & 1975, Long et al 
Long, 1975) have studied further properties of c
functions and defined a new class of functions called c*
continuous functions in topological spaces. Again, in 1978 
Gauld (1978) has defined and studied some more properties of 
c-continuous functions via cocompact topologies. In 1965, O.
Njastad (1965), had defined the concept of α
sets were called as α-open sets. 1983,Mashhour
have defined and studied the concepts of α
continuity, α-openness and α-closedness in topological spaces. 
In this paper, we define and study the concept of c
continuity, c-continuity, c*--continuity and almost 
continuity. Also, we characterize their basic properties. 
 
2.Preliminaries 
 
 Throughout the present paper, spaces (X,
simply, X and Y) always mean topological space s on which 
no separation axioms are assumed unless explicitly stated. 
Moreover, in this paper wherever compactness is taken to 
mean every open cover has a finite subcover and subsets of a 
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space are compact provided they are compact considered as 
subspace (cf.10).Let A be a subset of a space X. The closure 
and the interior of A are denoted by Cl(A) and Int(A), 
respectively. A subset A of a space X is called regular open (in 
brief, r-open) if A = Int Cl(A) and regular closed (in brief, r
closed ) if A = Cl Int(A).  
 
 The following definitions and results are useful in the sequel: 
 
Definition 2.1: A subset A of a space X is said to be: 
 
(i) α -open (23) if A  Int(Cl(Int(A)))
(ii) semi-open (9) if A  Cl(Int(A))
(iii) pre-open (16) if A  Int(Cl(A)
(iv) -open (1) if A  Cl Int Cl(A).
 
The family of all α –open (resp. semi
space X is denoted by α O(X) (resp. SO(X) PO(X.) The 
complement of an α -open (resp. pre
closed (18) (resp. pre-closed (5
 
Definition 2.2: The intersection of all α
A is called the α-closure of A and is denoted by
(Mashhour et al., 1983).  
 
 The union of all pre-open sets contained in A is called pre
interior of A and is denoted by pInt(A) 
1984). 
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Definition 2.3: A function f:X Y is said to be: 
 

 precontinous ( 16 ), if the inverse image of each open 
subset of Y is preopen subset in X. 

 semicontinuous(9), if the inverse image of each open 
subset of Y is semiopen  subset in X. 

 α-continuous (18), if the inverse image of each open 
subset of Y is α-open subset in X. 

 
Definition 2.4 (3): A function f:X Y is said to be pre-α-
open(resp. pre-α-closed) if the image of each α-open (resp. α-
closed) subset of X is α-open (resp. α-closed ) subset in Y. 
 
Definition 2.5 (7): A function f: X  Y is said to be c-
continuous if for each x  X and each open set V  Y 
containing f (x) and having compact complement, there exists 
an open set U containing x such that f(U)  V. 
 
Theorem 2.6 (7, Th.1): Let f: XY be a function. Then the 
following statements are equivalent:  
 

 f is c-continuous. 
 If V is an open subset of Y with compact complement, 

then f-1(V) is open subset of X. These statements are 
implied by:  

 If F is a compact subset of Y, then f-1(F) is closed subset 
of X and, moreover, if Y is Hausdorff, then all the 
above statements: (i)-(iii) are equivalent. 

 
Theorem 2.7: Let f: X  Y be a function. Then, f is c-
continuous if and only if:  
 

 The inverse image of each open subset of Y having 
compact complement is open in X (Long, 1974). 

 The inverse image of each closed compact subset of Y 
is closed in X (Singh, 1986). 

 
Definition 2.8 (Govindappa Navalagi, 2014): A function f: X 
 Y is said to be c-precontinuous if for each x  X and each 
open set V  Y containing f (x) and having compact 
complement, there exists an preopen set U containing x such 
that f(U)  V. 
 

Definition 2.9 (Caldas et al., 2005; Govindappa Navalagi, 
2014): A function f: X  Y is said to be c-semicontinuous if 
for each x  X and each open set V  Y containing f (x) and 
having compact complement, there exists an semiopen set U 
containing x such that f(U)  V.  
 
Definition 2.10 (Govindappa Navalagi, 1965): A function f: X 
 Y is said to be c--continuous if for each x  X and each 
open set V  Y containing f (x) and having compact 
complement, there exists an -open set U containing x such 
that f(U)  V. 
 
Definition 2.10 (Aho, 1994): A space X is a PS-space iff each 
preopen subset of X is semiopen.  It means that, a space X is 
PS-space if PO(X)  SO(X). 
 

3. Properties of c-α-continuous functions 
 

 We, define the following. 
 

Definition 3.1: A function f: X  Y is said to be c-α-
continuous if for each x  X and each open set V  Y 
containing f (x) and having compact complement, there exists 
an α-open set U containing x such that f(U)  V.  As, we know 
that every α-open set is preopen and semiopen, so the 
following imply:  
 

 Every c-continuous function is c-α-continuous. 
 C-α-continuous function is c-precontinuous.  
 C-α-continuous function is c-semicontinuous. 
 

We, have the following:  
 
Lemma 3.2: In a PS-space, if f:XY is c-precontinuous then 
it is c-semicontinuous.  
 
 We, prove the following.  
 
Theorem 3.3: Let f: XY be a function. Then the following 
statements are equivalent:  
 

 f is c--continuous. 
 If V is an open subset of Y with compact complement, 

then f-1(V) is α-open subset of X. 
 
 These statements are implied by:  
 

 If F is a compact subset of Y, then f-1(F) is α-closed 
subset of X and, moreover, if Y is Hausdorff, then all 
the above statements: (i)-(iii) are equivalent. 

 
Proof follows by Theorem 2.7 and 2.8 above. Easy proof of the 
following is omitted. 
 
Lemma 3.4: A function f: X  Y is said to be c-α-continuous 
if the inverse image of each open subset of Y having compact 
complement is α-open in X. 
 
Lemma 3.5: A function f: X  Y is said to be c-α-continuous 
if the inverse image of each closed compact subset of Y is α-
closed in X. 
 
 We, recall the following. 
 
Lemma 3.6(Mashhour, 1119): If A is either preopen or 
semiopen subset of X and V is a α-open subset of X, then A  
V is a α-open subset in the subspace ( A, /A).  Next, we prove 
the following. 
 
Theorem 3.7: If f: X  Y is c-α-continuous function and A be 
an either preopen or semiopen subset of X, then f/A: A  Y is 
also c-α-precontinuous.   Easy proof of the Theorem follows 
by Lemma – 3.5 above.  We, define the following. 
 
Definition 3.8: A function f: X Y is said to be M-α-
continuous, if the inverse image of each α-open subset of Y is 
α-open subset in X., equivalently, if the inverse image of each 
α-closed subset of Y is α-closed subset in X. 
 

Theorem 3.9: If f: X  Y is M-α-continuous and g: Y Z is 
c-α-continuous, then gof is c-α-continuous. 
 
Proof. Let U be an open subset of Z having compact 
complement. Then, g-1(U) is α-open set in Y, since g is c-α-
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continuous. Again, as f is M-α-continuous and g-1(U) is α-open 
subset of Y, (gof)-1(U) = f-1(g-1(U)) is α-open subset in X. This 
shows that gof is c-α-continuous function. 
We, define the following. 
 
Definition 3.10: A function f: X Y is said to be α*-
continuous, if the inverse image of each α-open subset of Y is 
open subset in X. 
 
Theorem 3.11: If f: X Y is α*-continuous and g: Y Z is c-
α-continuous, then gof is c-continuous function. 
 
 Proof follows from Theorem-3.6. 
 
Theorem 3.12: Let f: X  Y be either pre-α-open or pre-α-
closed surjection and let g: Y Z be any function such that 
gof is c-α-continuous.Then, g is c-α-continuous.  
 
Proof: Suppose f is pre-α-open (resp. pre-α-closed) and V be 
an open subset with compact complement (resp. V be a closed 
compact subset ) in Z. Since gof is c-α-continuous, (gof)-1(V) = 
f-1(g-1(V)) is α-open (resp. α-closed) subset in X. Since f is pre-
α-open (resp. pre-α-closed) and surjective, f (f-1(g-1(V))) = g-

1(V) is α-open (resp. α-closed) set in Y and consequently, g is 
c-α-continuous function.  
 
 We, define the following. 
 
Definition 3.13: A function f: X Y is said to be α*-open 
(resp. α*-closed), if the image of each α-open (resp. α-closed) 
subset of X is open (resp. closed) subset in Y. 
 
Theorem 3.14: Let f: X  Y be either α*-open or α*-closed 
surjection and let g: Y Z be any function such that gof is c-
α-continuous. Then, g is c-continuous. 
 
 Proof follows by Theorem -3.8 above. 
 
 In view of the fact that an arbitrary union of preopen (resp. 
semiopen, α-open) sets is preopen (resp. semiopen, α-open), 
we have the following (Husain, 1977; Mashhour, 1982; Reilly, 
1990; Mashhour, 1983). 
 
Theorem 3.15: If X and Y are two topological spaces and X = 
A  B, where A and B are preopen or semiopen subsets of X 
and f: X  Y is a function such that f|A and f|B are c-α-
continuous, then f is c-α-continuous. 
 
Proof: Assume that A and B are preopen or semiopen subsets 
in X. Let U be an open subset of Y with compact complement. 
Then, we have f-1(U) = ( f|A)-1(U)  (f|B)-1(U), each of which 
is α-open by Lemma-3.5 & Theorem- 3.6. Thus, f -1(U) is α-
open in X and hence f is c-α-continuous. 
 
 Recall that a space X is called -T1 (3) if, for x, y X such 
that x ≠ y, there exist preopen sets U and V such that x  U, y 
 U and y  V, x V. Also, it is proved that in (Caldas, 2005) 
a α-T1 space every singleton set is α-closed. 
 
 In view of the above result, we give the following. 
 
Theorem 3.16: Let f: X Y be c--continuous and injective.  
 
If Y is T1, then X is α-T1.  

 We, recall the following 
 
Definition 3.17(16 ): Let f: X  Y be a function.Then, G(f) 
={(x,f(x)) | x X } is called the graph of f and the function 
g(f): X  X x Y defined as g(f)(x) = (x,f(x)) for each xX is 
called the graph function of f.  
 
Theorem 3.18: Let f: X  Y be c--continuous. Then, the 
graph function g(f): X  X x Y is c--continuous. 
 
Proof: Let U x V be any open subset in X x Y having compact 
complement W of X x Y. Then, we have to show that (g(f))-

1(U x V) is -open set in X. Let W= X x Y \ ( U x V) = (X\U) 
x Y  X x (Y\V), in which X x (Y\V) being the closed subset 
of W must also be compact. Since PY: X x Y  Y being the 
projection, which is continuous, so PY (X x (Y \ V)) = Y\V is 
compact in Y. Thus, f -1(V) is -open set in X. Since f is c--
continuous, (g(f))-1(U x V)=Uf-1(V), which is -open as the 
intersection of an open set and an -open set is again -open. 
Therefore, g(f) is c--continuous. 
 
Theorem 3.19: Let X be compact Hausdorff space. If g(f): X 
X x Y is c--continuous, then the function f: X Y is c--
continuous. 
 
Proof: Let V any open set containing f(x) having compact 
complement. Then, we have to prove that f-1(V) is -open in 
X: Consider X x V which is open in X x Y where X x Y \( X x 
V) = X x (Y\V) is compact, and g(f) is c--continuous and 
hence (g(f))-1(X x V) = f-1(V) which is -open in X.This shows 
that f is c--continuous. 
 

4. Properties of c-continuous functions 
 
 We, recall the folloing.  
 
Definition 4.1(15): A space X is said to be -compact if every 
-open cover of X has a finite subcover. 
 
 Clearly, every -compact space is compact. 
 
Lemma 4.2 (25): If a space X is -compact and A is an -
closed set of X, then A is -compact. 
 
 Now, we define the following.  
 
Definition 4.3: A function f: XY is said to be c-continuous 
if the inverse image of each closed -compact set of Y is -
closed in X.  It is well-known that a space X is said to be 
extremally disconnected (e.d), if the closure of each open 
subset of X is open. 
 
 We, give the following. 
 
Lemma 4.4: The following statements hold for a function f: 
XY:  
 

 f is c-continuous.  
 if G is an open subset of Y with compact complement, 

then f-1(G) is an open subset of X, when X is an e.d. 
 f is c--continuous function.  
  
Next, we recall the following.  
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Definition 4.5 (Noiri, 1988): A function f: XY is said to be 
almost -  -continuous if the inverse image of each r-open set 
of Y is -open in X. 
 
Definition 4.6 (Singh, 1986): A function f: XY is said to be 
almost -c-continuous if the inverse image of each r-open set of 
Y with compact complement is open in X. 
 
 We, define the following. 
 
Definition 4.6: A function f: XY is said to be almost -c-
continuous if the inverse image of each r-open set of Y with -
compact complement is -open in X. 
 
 Next, we prove the following  
 
Lemma 4.7: Let f:XY is an -irresolute function and 
g:YZ be an almost -c-continuous function, then gof is an 
almost-c-continuous function. 
 
Proof: Let G  Z be regular open set with compact 
complement, then g-1(G) is -open in Y.Again, f is -irresolute 
and g-1(G) is -open in Y, then f-1(g-1(G)) = (gof)-1(G) is -
open in X. This shows that gof is almost -c-continuous 
function. 
 
 It is well-known that a space X is said to be countably 
compact if every countable open cover of X has a finite 
subcover. 
 
 We, recall the following. 
 
Definition 4.8 (Maheshwari, 1981): A space X is said to be 
countably -compact if every -open cover of X has a finite 
subcover. Clearly, every countably -compact space is 
countably compact. 
 
Lemma 4.9 (Maheshwari, 1981): A space X is countably -
compact if every countable -closed cover of X has a 
nonempty f.i.p. 
 
Theorem 4.10 (Maheshwari, 1981): Every -closed open 
subspace Y of a countably -compact space is countably -
compact. 
 
 Clearly, we have the following. 
 
Lemma 4.11: If a space X is countably -compact and A is an 
-closed set of X,then A is countably -compact. 
 
 Next, we recall the folloing. 
 
Definition 4.12(Young Soo Park, 1971): A function f: XY is 
said to be c*-cintinuous if for each countably compact and 
closed set F of Y, f-1(F) is closed in X. 
 
 Now, we define the following. 
 
Definition 4.13: A function f: XY is said to be c*-
cintinuous if for each countably -compact and closed set F of 
Y, f-1(F) is -closed in X. 
 
 We, prove the following. 

Lemma 4.14: Let f:XY is an -irresolute function and 
g:YZ be an c*--continuous function, then gof is an c*--
continuous function. 
 
Proof: Let G  Z be open set with countably -compact 
complement, then g-1(G) is -open in Y.A gain, f is -
irresolute and g-1(G) is -open in Y, then f-1(g-1(G)) = (gof)-

1(G) is -open in X. This shows that gof is c*--continuous 
function. 
 We,recall the following. 
 
Lemma 4.15 (Maheshwari, 1981): If f: XY is an open 
continuous function then the inverse image of every -open set 
of Y is -open in X. 
 
 Next, we give the following. 
 
Lemma 4.16: Let f:XY be an open continuous function and 
g:YZ be c*--continuous function then gof is c*--
continuous. 
 
Conclusion 
 
In the lights of e.d & PS-spaces, we have the following 
implication: -open set  preopen set  semiopen set(and 
hence -open set) open set. Thus, in view of this 
implication, we conclude the following. 
 
Lemma 5.1: For a function f: XY, then the following are 
equivalent:  
 

 F is c--continuous,  
 F is c-precontinuous,  
 F is c-semicontinuous, 
 F is c--continuous,  
 F is c-continuous. 

 
Easy proof is omitted. 
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