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In this paper we discuss about Near product cordial labeling graphs like (C4 
P2,n-2,Total graph. If the labeling in the graph satisfies the condition of Near product cordial then it is 
called Near product cordial graphs.In this paper we 
except Total graph are Near product cordial graphs.
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INTRODUCTION 
 
The concept of cordial labeling was introduced by Cahit. The concept of product cordial labeling is introduced by M.
Ponraj and S. Somasundaram. Motivated by the above definitions, Near Product cordial was defined.
 
Theorem 1: The concept of cordial labeling was introduced by Cahit. The concept of product cordial labeling is introduced by M.
Sundaram, R. Ponraj and S. Somasundaram. 
 
Theorem 1: 
 
(C4 ⊗ C4) n is Near product cordial graph 
 
Proof: 
 

Let V(C4 ⊗C4) n  = { vi
j
 : 1 ≤ i ≤ 4 and  

                                         1 ≤ j ≤ n} and 
 

E(C4 ⊗C4) n = {vi
jvi+1

j : 1 ≤ i ≤ 3 and 1
Case (i): 
 

n is even and let  n = 2k (say) 
 

 Define f :V(C4⊗C4 )2k  → {1,2,3,........,8k

f (v1
j) =  �

8(� − 1) + 1,1 ≤ � ≤

8(� − � − 1) + 2	, � + 1 ≤
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f (v2
j
) =  �

8(� − 1) + 3	, 1 ≤ � ≤ �

8(� − � − 1) + 4	, � + 1 ≤ � ≤ 2�
�     

 

f (v3
j) =  �

8(� − 1) + 5	, 1 ≤ � ≤ �

8(� − � − 1) + 6	, � + 1 ≤ � ≤ 2�
�       

 

f (v4
j) = �

8(� − 1) + 7	, 1 ≤ � ≤ �

8(� − � − 1) + 8	, � + 1 ≤ � ≤ 2�
�     

     
Edge Condition:  
 
ef(0) = 5k and ef(1) = 5k-1 , when n = 2k 
 

Then, │ef(0)-ef(1)│= 1 
 

Hence, (C4⊗C4)2k is Near product cordial graph. 
 

Case (ii): 
 
Suppose n is odd and let  n = 2k+1 (say) 
 

Define f: V(C4⊗C4 )2k+1  → {1,2,3, . . . ,8k +3, 8k+5}  by 
 

f(v1
j) =   �

8(j − 1) + 1	, 1 ≤ j ≤ k + 1

8(j − k − 2) + 4	, k + 2 ≤ j ≤ 2k + 1
�    

 

  

f (v2
j) = �

8(� − 1) + 3	, 1 ≤ � ≤ � + 1

8(� − � − 2) + 6	, � + 2 ≤ � ≤ 2� + 1
�    

 

 

f (v3
j) = �

8(� − 1) + 5	, 1 ≤ � ≤ � + 1

8(� − � − 2) + 8	, � + 2 ≤ � ≤ 2� + 1
�    

 

 

f (v4
j) =  �

8(� − 1) + 7	, 1 ≤ � ≤ �

8(� − � − 1) + 2	, � + 1 ≤ � ≤ 2� + 1
�     

 

Edge Condition: 
 

ef(0) = 5k+2 and ef(1) = 5k+2, when n = 2k+1 
 

Then, │ef(0)-ef(1)│= 0 
 

Hence, (C4 ⊗C4)2k+1 is Near product cordial graph. 
 

Theorem 2: 
 

Qn  is Near product cordial graph if and only if n is odd. 
 

Proof:  
 

Let V(Qn) = { v1
i : 1 ≤  i ≤ n, v2

i : 1 ≤  i ≤ n 
                      and v3

i : 1 ≤  i ≤ n+1} and  
 

E(Qn) = {(v1
iv3

i : 1 ≤  i ≤ n) ∪ (v2
iv3

i : 1 ≤  i ≤ n) ∪(v1
iv3

i+1 : 1 ≤  i ≤ n) ∪    
                         (v2

iv3
i+1 : 1 ≤  i ≤ n} 

 

Define f: V(Qn) → {1, 2, 3, . . . ,3n, 3n+2} as follows  
 

When n is odd. 
 

f(v1
i) = �

3 + 6(� − 1)			,1 ≤ � ≤
���

�

4 + 6(� −
���

�
)	,

���

�
≤ � ≤ �

� 

 

(v2
i) = �

5 + 6(� − 1), 1 ≤ � ≤
���

�

6 + 6(� −
���

�
)	,

���

�
≤ � ≤ �

� 
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f(v3
i) = �

1 + 6(� − 1), 1 ≤ � ≤
���

�

2 + 6 �� −
���

�
� ,

���

�
≤ � ≤ � + 1

� 

 

Edge Condition: 
 

ef(0) = 2n and ef(1) = 2n 
 

Then, │ef(0) - ef(1)│= 0 
 

Hence, Qn is Near product cordial graph. 
 

Conversely, Suppose n is even 
 

For any labeling f: (G)→{1, 2, . . . ,3n,3n+2},It is observed that there are 
��

�
 odd numbers and 

��

�
+ 1 even 

numbers in f(V(Qn)).To get more edge as 1, a maximal connected sub graph of Qn on 
��

�
	vertices should be 

labeled with odd numbers.So label induced subgraph of Qn with the vertex set {v1
(i) v2

(i) v3
(i):1≤ � ≤

�

�
} by 

odd numbers to get maximum number of 1 as edge label. 
 
Then ef(1) ≤ 2n-2 and ef(0) ≥ 2n+2 
Therefore, ef(0) - ef(1) ≥ 4 
Hence, Qn is not near product cordial graph. 
 
Theorem 3: 
 

Parachute P2,n-2 is a near product cordial when n ≥ 3. 
 

Proof: 
 

Let V(P2,n-2) = { u, ui : 1≤ � ≤ n} and  
 

       E(P2,n-2) = {uiui+1 : 1≤ � ≤ n} ∪ {unu1} ∪ {uu1} ∪ {unu}  
 

Define f : V(P2,n-2) = {1, 2, 3, . . . . . . . , n ,n+2} as follows 
 

Case (i): When n is odd 
 

When n = 3 
 

f(ui) = 2i-1, 1≤ � ≤ 3 
 

f(u) = 2  
 

Edge Condition: 
 

 ef(0) =  2 and ef(1) = 3  
 

Then, │ef(0) - ef(1)│= 1 
 

When n is odd and n ≥ 5 
 

f(ui) = 2i-1 , 1≤ � ≤ 
���

�
 

 

f(ui) = 2+2(i-
���

�
) , 

���

�
≤ � ≤ � 

 

f(u) = n-1 
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Edge Condition: 
 

ef(0) =  
���

�
 and ef(1) = 

���

�
  

 
Then, │ef(0) - ef(1)│= 1 
 

Hence, Parachute P2,n-2 is   Near product cordial graph when n is odd. 
 

Case (ii): 
 

When n is even 
 

When n is even there are 
�

�
 odd numbers and 

���

�
 even numbers in f(V(G)). 

 

In order to get maximum number of 1, we should label maximal connected sub graph on 
�

�
 vertices of G with 

odd numbers. Note that maximal connected sub graph on 
�

�
 vertices should contain the cycle (uu1un) as a sub 

graph.It should be a unicyclic graph and hence its number of edges also 
�

�
 . 

 

Then, ef(0) ≥	
�

�
+2 and ef(1) ≤

�

�
  

 

Hence |ef(0) - ef(1)|	≥ 2. It is not a Near product cordial graph. 
 

But it is a weak near product cordial graph  
 

Now label (P2,n-2) as follows 
 

f(u) = 3 
f(un) = 1 

f(ui) = 5+2(i-1) , 1≤ � ≤ 
���

�
 

f(ui) = 2+2(i-
���

�
), 
���

�
≤ � ≤ � − 1 

 
Edge Condition: 
 

ef(0) =  
���

�
 and ef(1) = 

�

�
  

 

Then, │ef(0) - ef(1)│= 2 
 
Hence, Parachute P2,n-2 is Weak Near product cordial graph when n is even and n > 4. 
 
Case (iii): 
 

When n = 4 
 
In this case, we have 5 vertices and 6 edges exactly and there are 2 odd numbers and 3 even numbers in 
f(V(G)).  
 

Clearly, ef(0) = 5 and ef(1) = 1 
 

Hence, Parachute P2,n-2 is  not a Near product cordial graph, when n = 4. 
 

Theorem 4: 
 

The Total graph T(Pn) is not Near product cordial 
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Proof: 
 
Let V (T(Pn)) = {ui:1 ≤  i ≤ n } and  
                         {vi:1 ≤ i ≤ n-1} and 
       E (T(Pn) = {(uiui+1) ∪ (uivi) ∪ 
                          (ui+1vi):1 ≤ i ≤ n-1} ∪                        
                          (vivi+1):1 ≤ i ≤ n-2} 
 
For any labeling f:V(T(Pn)) → { 1, 2, 3, . . . . . . ,2n-2, 2n} there are n-1 odd numbers and n is even numbers. 
In order to get maximum edge label 1, a maximal connected subgraph of T(Pn) on n-1 vertices should be 
labeled with odd numbers. This can be done as follows. If n is odd, the induced sub graph with vertex set {ui 

,vi:1≤ � ≤ 
���

�
} of T(Pn) should be labeled  with odd numbers and if n is even then the induced sub graph 

with vertex set {ui: 1≤ � ≤
�

�
}{vi: 1≤ � ≤

���

�
}of T(Pn) should be labeled with odd numbers. 

 

Edge  Condition: 
 
In both the cases we have, 
 

ef(1)	≤	2n-5 and ef(0) ≥ 2n  
 

Then, ef(0) - ef(1) ≥ 2n - (2n-5) = 5 
 

Hence, T(Pn) is not Near product cordial graph. 
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