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The FASN is essential enzyme in de novo fatty acid synthesis that converted into phospholipids 
which provides resistance to drug uptake in malignancies. The FASN over expression and 
intrinsic/acquired both types of drug resistance reported in carcinomas. T
regulation overall therapeutic response in drug screened cancer cell line data from Cancer Cell Line 
Encyclopedia (CCLE) by a rational 
We identify differential response of
the drug performance increases in presence of FASN over expression but several cancer studies 
showed drug resistance by FASN over expression. The FASN increased expression drug resistance 
mainly linked with MAPK, EGFR, AKT, BCR/ABL, MDM2, HDAC and IGFR pathways that are 
responsible for angiogenesis, growth, survival, migration, differentiation and proliferation. Our study 
signifies the FASN elevated expression resistance to anti
which indicate the FASN inter/intra
We diagnose the FASN over expression as predictive marker in drug resistance genomes to design 
molecular medicines that con
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INTRODUCTION 
 
The well-known homodimeric protein Fatty acid synthase 
(FASN) consist on six enzymatic domains that transform the 
acetyl-CoA and melonyl-CoA into palmitate fatty acid 
(Jensen-Urstad et al., 1859). The initial studies reported their 
role in embryonic development by triggering the proliferation 
of several tissues (Chirala et al., 2003). FASN perform 
significant contribution in molecular activity under aberrant 
metabolic states, inter-cellular integrity, cardiac stress related 
homeostasis response and regeneration of neural stem cells 
(Knobloch et al., 2012). The FASN differential expression 
monitored in normal and tumor tissues including colorectal, 
pancreatic and breast cancer has overexpression of FASN (Cai  
et al., 2014; Bhatt  et al., 2012). The FASN eleva
expression regulated through various factors such as SREBP
1c, ChREBP, mTOR, AMPK, LXRα, NAC1, miRNAs and 
acetyltransferase p300 in malignancies (Ishii  
Hansmannel  et al., 2006; Wang  et al., 2016). The USP2a 
expression stimulates the FASN up-regulation in autocrine 
manner in prostate cancer (Graner et al., 2004). 
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ABSTRACT 

The FASN is essential enzyme in de novo fatty acid synthesis that converted into phospholipids 
which provides resistance to drug uptake in malignancies. The FASN over expression and 
intrinsic/acquired both types of drug resistance reported in carcinomas. T
regulation overall therapeutic response in drug screened cancer cell line data from Cancer Cell Line 
Encyclopedia (CCLE) by a rational CCLE GDSC gene expression 
We identify differential response of FASN in different drug treated tissue in which few cancer studies 
the drug performance increases in presence of FASN over expression but several cancer studies 
showed drug resistance by FASN over expression. The FASN increased expression drug resistance 

ainly linked with MAPK, EGFR, AKT, BCR/ABL, MDM2, HDAC and IGFR pathways that are 
responsible for angiogenesis, growth, survival, migration, differentiation and proliferation. Our study 
signifies the FASN elevated expression resistance to anti-proliferator
which indicate the FASN inter/intra-pathway interactions with oncogenes for their effective survival. 
We diagnose the FASN over expression as predictive marker in drug resistance genomes to design 
molecular medicines that consider it secondary target in generally accepted therapy. 

 access article distributed under the Creative Commons Attribution
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The population genetic studies explore the FASN increased 
level with poor prognosis in 424 obese men in prostate 
carcinoma (Nguyen et al., 2010). The FASN overexpression 
develops tumorigenesis by increasing the lipogenesis, Her2 
activity, growth and proliferation of breast cells that induce 
factors-independent growth in culture (Vazquez
2008). The breast malignancies transforms into non
states by FASN expression inhibition (Gonzalez
al., 2016). The prostate cells gain 90
tumors with FASN overexpression and 30% risk with FASN 
down regulation (Fiorentino 
overexpression leads to excessive palmitoylation of Wnt
AR receptors which are responsible for adenocarcinomas 
establishment that induce the regulation of FASN transcription 
factor SREBP (Migita et al., 2009). The tumor cells utilize the 
palmitate for the synthesis of phospholipids to develop cell 
membrane inducing proliferation and 16
alterations in plasma membrane fluidity (Rysman  
Li, 2014). Various proliferating agents like KRAS
HRAS, tubulin and Wnt factors need palmitoylation for 
functional heterogeneity (Heuer, 2016). The Wnt/β
mTOR and PI3K/AkT signaling pathw
functionality by the inhibition of FASN expression (Röhrig, 
2016). The decline of FASN expression leads to decrease the 
quantity of diacyl glycerols that induce cell death by reduction 
of Kinase C signaling pathway (Benjamin 
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The FASN is essential enzyme in de novo fatty acid synthesis that converted into phospholipids 
which provides resistance to drug uptake in malignancies. The FASN over expression and 
intrinsic/acquired both types of drug resistance reported in carcinomas. To assess the FASN up-
regulation overall therapeutic response in drug screened cancer cell line data from Cancer Cell Line 

CCLE GDSC gene expression - drug sensitivity correlations tool. 
FASN in different drug treated tissue in which few cancer studies 

the drug performance increases in presence of FASN over expression but several cancer studies 
showed drug resistance by FASN over expression. The FASN increased expression drug resistance 

ainly linked with MAPK, EGFR, AKT, BCR/ABL, MDM2, HDAC and IGFR pathways that are 
responsible for angiogenesis, growth, survival, migration, differentiation and proliferation. Our study 

proliferatory drugs for multiple oncogenes 
pathway interactions with oncogenes for their effective survival. 

We diagnose the FASN over expression as predictive marker in drug resistance genomes to design 
sider it secondary target in generally accepted therapy.  
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The population genetic studies explore the FASN increased 
level with poor prognosis in 424 obese men in prostate 

., 2010). The FASN overexpression 
develops tumorigenesis by increasing the lipogenesis, Her2 

eration of breast cells that induce 
independent growth in culture (Vazquez-Martin et al., 

2008). The breast malignancies transforms into non-malignant 
states by FASN expression inhibition (Gonzalez-Guerrico et 

., 2016). The prostate cells gain 90% risk to develop invasive 
tumors with FASN overexpression and 30% risk with FASN 
down regulation (Fiorentino et al., 2008). The FASN 
overexpression leads to excessive palmitoylation of Wnt-1 and 
AR receptors which are responsible for adenocarcinomas 

lishment that induce the regulation of FASN transcription 
., 2009). The tumor cells utilize the 

palmitate for the synthesis of phospholipids to develop cell 
membrane inducing proliferation and 16-18C fatty acids makes 

in plasma membrane fluidity (Rysman  et al., 2010; 
Li, 2014). Various proliferating agents like KRAS-A, NRAS, 
HRAS, tubulin and Wnt factors need palmitoylation for 
functional heterogeneity (Heuer, 2016). The Wnt/β-catenin, 
mTOR and PI3K/AkT signaling pathways showed loss of 
functionality by the inhibition of FASN expression (Röhrig, 
2016). The decline of FASN expression leads to decrease the 
quantity of diacyl glycerols that induce cell death by reduction 
of Kinase C signaling pathway (Benjamin et al., 2015). The 
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FASN over expression provides the nourishment to tumor 
microenvironment through vascularization, inflammatory 
response and lipogenesis in colorectal cancer (Zaytseva et al., 
2014). The FASN mediated drug resistance reported in several 
studies that produce high amount of fatty acids which induced 
cell membrane reduced permeability of chemotherapeutic 
drugs such as doxorubicin (Rysman et al., 2010). There is 
urgent need to evaluate the multi-dimensional FASN 
differential expression behavior towards group of anti-cancer 
drugs to identify it as a secondary drug target and primary 
cause of drug resistance. We use a novel CCLE GDSC gene 
expression - drug sensitivity correlations tool 
(www.public.tableau.com) that operate on drug treated cell 
lines datasets to determine the effects of FASN expression on 
anti-cancer drug activity and efficiency.  
 

RESULTS  
 
FASN expression correlation towards anti-cancer drugs: 
We obtain the FASN expression correlation in 24 types of 
cancers with 21 anti-cancer drugs. The Crizotinib or PF-
2341066 is anti-cancer drug targeting ALK, ROS1, c-
Met/HGFR which are significant promoter of oncogenesis in 
various malignancies. The crizotinib competitively interact 
with ATP-binding pocket of above kinases to prevent the risk 
of aberrant cell proliferation (Kwak  et al., 2010; Cui  et al., 
2011 Wong  et al., 2009; Rikova  et al., 2007). Here FASN 
showed negative correlation with PF-2341066 in lung, ovary, 
soft tissue and urinary tract carcinomas that indicates the 
FASN supportive role in drug targeting activity and efficiency 
to inhibit tumorigenesis. The PH-665752 or small molecule c-
MET inhibitor reported in prevention of cell migration, 
motility and proliferation (Christensen et al., 2003). Here 
FASN showed negative correlation with PH-665752 in 
multiple myeloma to enhance drug activity. Erlotinib is EGFR 
inhibitor by interacting to its ATP-binding site and prevent the 
development of homodimer that initiate signaling cascade of 
cellular proliferation (Herbst, 2005b).  
 
FASN showed positive correlation with Erlotinib in CML, 
esophagus, multiple myeloma and pancreatic cancers that is 
the sign of drug resistance which reduce the efficiency of drug. 
It also showed negative correlation in upper aerodigestive 
malignancies that invites to determine their supporting role in 
Erlotinib activity. Dovitinib or TK1258 inhibits VEGFR, 
PDGFR, FGFR1/3, FMS-3, c-KIT and colony stimulating 
factor receptor 1 that promote cancer cell proliferation, 
survival, angiogenesis and differentiation (Engebraaten et al., 
1993). FASN showed positive correlation with Dovitinib in 
lymphoma to resist the effects of drug on cell functions. In 
urinary tract, melanoma and few lymphomas FASN showed 
negative correlation to TK1258 for enhancement of its effects. 
Lapatinib inhibits EGFR and HER2 kinases in breast cancer 
via interacting to ATP-binding pocket to block self-
phosphorylation and signal activation for cell growth (Moy, 
2007). FASN has positive correlation in colorectal and 
negative correlation in stomach cancer that showed both 
resistance and supportive behavior towards Lapatinib. 
Vandetanib inhibits VEGFR2, EGFR and RET kinases in 
various forms of thyroid gland tumors (Fallahi  et al., 2015; 
Chougnet  et al., 2015; Ammer  et al., 2009). FASN has 
positive correlation in melanoma to reduce the activity of drug 
and negative correlation in soft tissue and glioma to enhance 
the activity of drug. Saracatinib or AZD0530 inhibits Src 
family of kinases, Abl-kinases and LCK kinases in treatments 

of Alzheimer, schizophrenia and T-cell leukemia (Ammer  et 
al., 2009; Dong, 2010). FASN has positive correlation in liver 
cancer and negative correlation in myeloma which has tissue 
specific resistance. PLX4720 inhibit B-RAF pathway to 
prevent the cellular proliferation in melanomas (Li et al., 
2006). FASN has negative correlation in soft tissue cancer that 
indicates drug better activity in FASN expression. RAF265 
inhibit RAF kinases and VEGFR2 to limit the risk of tumor 
cell proliferation and angiogenesis (Kumar et al., 2009). FASN 
has positive correlation in breast and soft tissue cancer to 
decrease the effects of RAF265 and negatively correlation in 
CML, colorectal and breast cancer to provide support in drug 
efficiency. Selumetinib or AZD6244 is antineoplastic drug 
inhibit MEK1/2 which is the major driver of proliferative 
cellular pathways (Yeh et al., 2007). FASN showed strong 
positive correlation in CML and lymphoma that uncover its 
resistance to AZD6244. It has negative correlation in upper 
aerodigestive and stomach cancers to support the drug 
performance. Topotecin inhibit topoisomerase 1 to induce cell 
death by preventing DNA replication. It is specific S-Phase 
anti-cancer drug (Léger et al., 2004). FASN has healthy 
positive correlation in lymphoma and AML that indicates the 
resistance and gains intentions to determine their interaction as 
a secondary target. FASN has negative correlation in kidney 
cancer as a tissue specific scenario. Tanespimycein or 17AAG 
is inhibitor of HSP90 which is the controller of protein 
confirmations, growth and survival signaling pathways 
(Dimopoulos et al., 2011).  

 
FASN showed negative correlation esophagus, liver, thyroid, 
stomach and T-cell ALL which indicates drug ideal activity in 
FASN expression. It has positive correlation in AML which 
showed its drug resistance property. AEW541 inhibit IGF-1R 
receptor kinase which is responsible for angiogenesis, 
transformations, survival, proliferation and metastasis. The 
drug inhibits the autophosphorylation of IGF-1R (Garcı́a-
Echeverrı́a et al., 2004). FASN has strong positive correlation 
in endometrium and kidney cancers specify its resistance to 
drug effects. L-685458 is γ-secretes inhibitor which is 
transmembrane protein involved in Alzheimer disease 
(Shearman et al., 2000). FASN has strong positive correlation 
in T-cell ALL and negative correlation in endometrium that 
showed its differential behavior towards L-685458. Nilotinib is 
inhibitor of Bcr-Abl mediated proliferation, PDGFR, c-KIT 
and GISTs in CML therapies (Manley et al., 2010).  

 
FASN has strong positive correlation in breast and glioma 
which showed drug resistance. Nutlin-3 inhibits MDM2 and 
activates TP53 apoptotic inducer to prevent the process of 
tumorigenesis. FASN has positive correlation in melanomas to 
decrease the effects of drug of apoptotic induction. Paclitaxel 
is anti-tumor drug that promote tubulin polymerization leading 
cell cycle arrest to cell death (Ganguly et al., 2010). FASN has 
negative correlation in liver and soft tissue cancer specify its 
progressive role in drug efficiency. Panobinostat is the 
inhibitor of Histone deacetylase enzymes to induce apoptosis 
(Gaur et al., 2015). FASN has positive correlation in AML and 
multiple myeloma which gives resistance to drug competence. 
It also has negative correlation in liver and lymphomas with 
drug effects. Palbociclib or PD-0332991 is the inhibitor of 
cyclin-dependent kinases in ER-positive and HER2-positive 
breast malignancies (Finn et al., 2009). FASN has negative 
correlations in colorectal, lung and ovary cancer that promotes 
the effects of drug (Fig 1).  
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DISCUSSION 
 
FASN has two types i.e. cytosolic and mitochondrial both are 
capable to synthesize lipid contents but mitochondrial FASN 
induced fatty acid synthesis played significant role in 
mitochondrial physiology (Lee   et al., 2013; Menendez , 
2004). The cytosolic FASN is 270 KDa multi-dimensional 
polypeptide protein that has 6 catalytic domains including KS, 
MAT, DH, ER, KR, TE and ACP that gives the X shape to 
FASN protein (Zeng et al., 2011). The cancer cell synthesizes 
de novo fatty acids that develop into phospholipids which 
initiate signaling cascade (Kuhajda, 2006). Various studies 
reported the FASN overexpression resistance correlation with 
chemotherapeutics such as its elevated expression increased 
the resistance in doxorubicin-targeted breast cancer cell lines 
(Milgraum et al., 1997). In pancreatic cancer cells FASN up-
regulation acquired gemsitabine resistance that shared its post-
translational regulation (Buchholz et al., 2005).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FASN knockout studies in cancer cell lines determine that 
cancer cells become sensitized to anti-cancer drugs such as 
Trastuzumab, 5-FU, γ-irradiation, TRAIL and DNA-damaging 
drugs (Ventura  et al., 2015; Alò  et al., 1999;  Puig , 2011). In 
this study we determine the FASN overall therapeutic response 
to anti-cancer drugs and evaluate the resistance to various 
drugs in multiple tissues in a single approach. The FASN 
overexpression provides strong resistance to Erlotinib, 
TK1258, Lapatinib and Vandetanib anti-cancer drugs which 
mainly target the EGFR that modulate the signaling pathways 
of growth, survival, migration, adhesion and differentiation of 
tumor cells (Yewale et al., 2013). The EGFR activation 
stimulated by ligand-induced SH2 and PTB domains receptor 
dimerization that further trigger STAT, AKT, PI3K and 
MAPAK pathway that leads to cell adhesion, survival, 
migration and proliferation (Cargnello  et al., 2011; Lim, 
2006). The anti-EGFR drugs normally inhibit intracellular 

 
 

Fig. 1. FASN therapeutic response in 24 cancers with 21 anti-cancers drugs 
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kinase domain that harbor ATP binding pocket which prevent 
the autophosphorylation of downstream signaling pathways 
(Cohen, 2003). These drugs induce apoptosis, cell cycle arrest 
and activation of anti-growth signals (Herbst, 2002). The 
FASN resistance behaviors signify its functional association 
with EGFR mediated proliferatory pathways. In EGFR therapy 
the FASN showed the role of secondary drug target for 
upcoming drugs. The PF-2341066 and PHA-665752 drugs 
inhibit c-MET receptor tyrosine kinase protein which promotes 
oncogenesis by increasing the cell motility, invasion and 
metastasis (Bachleitner-Hofmann et al., 2008). The anti-c-
MET therapy decreases the PI3K/AKT/mTOR growth and 
survival pathways. It also inhibits the PDGF-β, JAK2 and ABL 
receptor mediated proliferation (Andrae et al., 2008). The 
FASN overexpression showed negative correlation with these 
drugs that indicates their best performance to prevent the 
oncogenesis in the presence of FASN up-regulation. The 
AZD0530 and Nilotinib inhibit ABL/BCR-ABL pathway that 
drives various pathways of proliferation and survival (Quintás-
Cardama, 2009). The BCR/ABL autophosphorylation trigger 
the development of GRB2/GAB2/SOS/ RAS/PI3K/ AKT/ 
MAPK/FOXO complex pathway of cell survival, migration 
and proliferation (Zhang  et al., 1998; Smith  et al., 1999; 
Pendergast  et al., 1993; Sattler, 2002; Skorski et al., 1995). 
The FASN overexpression becomes a barrier in anti-
BCR/ABL therapy due to positive resistance correlation with 
these drugs. The upcoming anti-cancer drugs for BCR/ABL 
accounted the expression of FASN as a drug target. The 
AZD6244 and PD-0325901 inhibit the MEK protein which is 
the component of MAPK pathway that is very significant in 
both normal/malignant states. The FASN showed resistance to 
anti-MEK therapy which is clear sign of its acquired oncogenic 
property to promote cell survival and growth. The Topotecin 
inhibit topoisomerase 1 which are responsible for DNA 
replication leads to cell division. The FASN showed strong 
resistance to Topotecin which indicates their gene regulatory 
essential role in oncogenesis. The 17-AAG inhibits HSP90 
which is involved in tumor growth related protein stability 
(Pratt et al., 2003). The FASN has resistance to HSP90 
inhibitor to enhance the process of tumorigenesis. The 
AEW541 inhibits IGF-1R which is growth promoter and anti-
apoptotic mechanism supporter. Its overexpression reported in 
several malignancies including lung, prostate and breast 
cancers (Tognon  et al., 2012; Chen, 2013). The FASN 
provides strong obstacles to anti-IGFR-1R therapy.  
 
The determination of FASN-IGFR-1R crosstalk finds out 
novel targets in drug resistance. The RAF265 target RAF-B 
and KDR that initiate the signals to drive cell growth on large 
scale cellular level (Wu et al., 2000). The FASN showed 
resistance to drug therapy and promote the onco-proteomic 
signaling. The Nutlin-3 inhibits anti-apoptotic MDM2 which 
involved in negative regulation of TP53 (Tovar et al., 2006). 
The FASN has drug resistance to escaping of TP53 activation 
that makes the FASN as a component of anti-apoptotic 
cascade. The Panobinostat inhibit the HDAC family that 
involved in gene expression/regulation, cell cycle and notch 
signaling pathway (Rajendran et al., 2013). The FASN has 
opposition to anti-HDAC drug to support the progression of 
oncogene mediated carcinogenesis. The L-685458 inhibit γ-
secretes which is transmembrane protein played crucial role in 
regulation of cell cycle regulatory membrane proteins such as 
CD44, Notch, ErbB4 and E-Cadherins (Allenspach  et al., 
2002; Zöller, 2011). The FASN resistance to L-685458 
indicates its role in diseases other than cancer. The FASN drug 

resistance mapping in 24 cancers with 21 drugs displayed its 
key role in cancer progression to metastasis. This approach 
explores the FASN functional link with cell growth, survival, 
differentiation, proliferation and anti-apoptotic pathways. Our 
work opens the channel to examine the cross-talk among 
FASN and these drug targets which provides synergistic 
associations. The FASN overexpression behaves as a 
predictive marker in drug resistance by large screening in scale 
cancer cell lines. In future the concept of combinatorial drug 
dosage therapy eliminates from prescriptions due to FASN 
type drug resistance secondary targets. This study invites the 
system-level molecular medicine approach to design rational 
drugs to inhibit co-target pathways for efficient therapy.    
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