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distributions either disc
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INTRODUCTION 
 
Sampling plays an important role in a large number of 
statistical researches. We can generate random sample from 
various distributions either discrete or continuous such as 
Uniform, Binomial, Gamma, Exponential, Normal etc. But all 
these distributions are univariate. We can also generate random 
samples from the bivariate distributions. Tables are available 
for this purpose. But, it is quite difficult to handle these tables 
for the sampling. We tried to generate random samples from 
multivariate normal distribution using multivariate technique 
PCA. Traditionally, PCA is either carried on variance
covariance matrix, or on correlation matrix (often known as the 
standardized variance-covariance matrix). When the variation 
in the variables is of main interest and one has to encounter the 
variability of each variable having the same units then 
covariance matrix is a good choice. Otherwise if the units of 
measurement of the individual variates differ then correlation 
matrix is preferred over covariance matrix. The ou
both the matrices will give different results. If there is no 
correlation between the original variates then the result will be 
same as that of the original variable. The transformed variables 
(Principal components) are of the same dimension as 
the original set of variables, say, if we have q numeric 
variables  resultant PC’s are also q in number arranged in 
ascending order according to their accounted variation. Each 
transformed PC is a linear combination of the all the original 
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ABSTRACT 

In this paper we discuss the use of Principal Component Analysis
samples from multivariate normal distribution, using mean vector and covariance matrix. Sampling is 
an important aspect in the field of Statistics. We can generate random samples from various univariate 
distributions either discrete or continuous. We can also generate samples from bivariate distributions 
for that purpose there are different tables available. But, sampling in that manner is troublesome. In 
this article we use PCA; a multivariate technique for the purpose of sampli
properties related to the multivariate normal data can be verified by simulating the samples.
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Sampling plays an important role in a large number of 
statistical researches. We can generate random sample from 
various distributions either discrete or continuous such as 
Uniform, Binomial, Gamma, Exponential, Normal etc. But all 

univariate. We can also generate random 
samples from the bivariate distributions. Tables are available 
for this purpose. But, it is quite difficult to handle these tables 
for the sampling. We tried to generate random samples from 

bution using multivariate technique 
Traditionally, PCA is either carried on variance-

covariance matrix, or on correlation matrix (often known as the 
covariance matrix). When the variation 

one has to encounter the 
variability of each variable having the same units then 
covariance matrix is a good choice. Otherwise if the units of 
measurement of the individual variates differ then correlation 
matrix is preferred over covariance matrix. The outcome from 
both the matrices will give different results. If there is no 
correlation between the original variates then the result will be 

The transformed variables 
(Principal components) are of the same dimension as that of 
the original set of variables, say, if we have q numeric 
variables  resultant PC’s are also q in number arranged in 
ascending order according to their accounted variation. Each 
transformed PC is a linear combination of the all the original  
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variables with associated coefficient provided in the eigen 
vectors of either matrix (covariance/correlation). The length of 
eigenvectors is typically taken
the transformed variables is orthogonality that is PC’s are 
uncorrelated. In general, Principal Components (y
uncorrelated linear combination of the set of observed 

multivariate data (��) often maximizing the variances

transformed Variables, Principal Component,
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(1)
Pearson (1901) originated the concept of PCA which then later 
carried out by Hoteling (1933). The application of PCA is 
discussed by Rao (1964), Cooley and Lohnes (1971), and 
Gnanadesikan (1977). Excellent statistical treatment of 
principal components are found in Kshirsagar (1972), 
Morrison (1976), and Mardia, Kent and Bibby (1979). 
Recently, Jolliffe and Cadima (2016) provide a review on PCA 
and its current development. PCA have no theoretical 
assumptions, makes it adaptive and hence many researchers in 
a variety of fields are applying PCA for transformation. 
Orthogonal principal componen
tailor structure in the data. Kim & Kim (2012) questioned the 
independence assumption subject to assumption of mulivaraite 
normality of the variable. They proposed an alternate method 
named as “Independent Component Analysis”, w
components are not only uncorrelated but are independent even 
when the normality assumption is violated. Giuliani (2017) 
define PCA as “hypothesis generating tool”. Baytes et al. 
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In this paper we discuss the use of Principal Component Analysis (PCA) for simulating random 
samples from multivariate normal distribution, using mean vector and covariance matrix. Sampling is 
an important aspect in the field of Statistics. We can generate random samples from various univariate 

rete or continuous. We can also generate samples from bivariate distributions 
for that purpose there are different tables available. But, sampling in that manner is troublesome. In 
this article we use PCA; a multivariate technique for the purpose of sampling. Furthermore, various 
properties related to the multivariate normal data can be verified by simulating the samples. 

This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

variables with associated coefficient provided in the eigen 
vectors of either matrix (covariance/correlation). The length of 
eigenvectors is typically taken as one. The main property of 
the transformed variables is orthogonality that is PC’s are 
uncorrelated. In general, Principal Components (yi) are 
uncorrelated linear combination of the set of observed 

) often maximizing the variances of the 

transformed Variables, Principal Component, 
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(1) 
Pearson (1901) originated the concept of PCA which then later 

(1933). The application of PCA is 
discussed by Rao (1964), Cooley and Lohnes (1971), and 
Gnanadesikan (1977). Excellent statistical treatment of 
principal components are found in Kshirsagar (1972), 
Morrison (1976), and Mardia, Kent and Bibby (1979). 

Cadima (2016) provide a review on PCA 
and its current development. PCA have no theoretical 
assumptions, makes it adaptive and hence many researchers in 
a variety of fields are applying PCA for transformation. 
Orthogonal principal component’s (PC’s) are then used to 
tailor structure in the data. Kim & Kim (2012) questioned the 
independence assumption subject to assumption of mulivaraite 
normality of the variable. They proposed an alternate method 
named as “Independent Component Analysis”, whose 
components are not only uncorrelated but are independent even 
when the normality assumption is violated. Giuliani (2017) 
define PCA as “hypothesis generating tool”. Baytes et al. 
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(2016) proposed sparse PCA which uses stochastic gradient 
framework to introduce sparsity to the loading vectors of PCA. 
Efficiency of sparse PCA was examined by using large-scale 
electronic medical record data. Winters et al. (2016) use the 
technique for environmental disaster data. 
 
Standard normal transformation through PC 
 
For the purpose of sampling, the property of Orthogonality of 
principal component is very useful. This procedure of 
multivariate sampling becomes quite easy when using this 
method. As, in univariate sampling we assume that population 
parameters are known to generate a random sample. Similarly, 
in multivariate sampling we consider a mean vector and a 
covariance matrix.  
 
In this section, we discussed the method and show that how a 
normally distributed random vector, whose probability 
distribution is multivariate normal with mean vector μ (of 
order m×1) and variance covariance matrix Σ (of order m×m), 
can be obtained from m independent univariate normal 
distribution, using the transformation taken from Guttman, 
(1982). 
 
Z = P' (y- μ)                                                                             (2) 
 
Where, 
 
P: matrix if eigenvector of a variance covariance matrix. 
Y: normally distributed random vector. 
μ: mean vector of the random vector y. 
 
The m random vector Y is said to be multi-normally 
distributed (provided in Equation 3), with probability density 
function Py (y1,y2,......,ym) is of the form 

 
gy(y) = gy(y1,y2,......,ym) 
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For (y1, y2..., ym)   Rm, the matrix 
1 =(

ij ) is an m×m 

positive definite matrix of constant, with 
ij =

ji , and μ =  

(μ1, μ2…μm)' is such that mjj ...,3,2,1,   . 

Now consider the transformation  

 
z = P'(y - μ) 

 
The jacobian of transformation is  
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Since
1  is positive definite symmetric, there exist an 

orthogonal matrix P such that, P'
1 P = D or 

1 = PDP', 

where D is a diagonal matrix: 

D = 























m





..00

0..00

0..00

0..0

0..0

2

1

              ,λj>0 

With λja characteristic root of
1 , j

m

j
D 

1

1



  , 

since P is orthogonal. The density function of z = P (y-μ) is 
obtained as 
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That is to say, gz(z) in Equation (6) is the product of marginal 
densities of random variables zj’s, are distributed 
independently as univariate normal with mean 0 and variance 
1/λj.  
 

It is clear that zj; j = 1,2,…,m, follow normal distribution with 

zero mean vector and with variance V(zj) = 

j

1
, on its 

diagonal, such that each zj's are independent of each other. 
That is, 
 

Z = P' (y- μ) ~ N ( 0 , D-1)  

Let consider another transformation U = 2

1

D Z; such that 

E(U) = 2

1

D  E(Z) = 0                                                               (7) 
 
and 

 

cov (U) = 2

1

D E(ZZ') 2

1

D = I                                                     (8) 

 

Then, U ~ N(0, I ). 
 

Since U = 2

1

D Z = 2

1

D  {P' (y- μ)} we get y as; 
 

y = P 2

1

D U + μ                                                                        (9) 
 
Thus, the expected value of the variable y is 
 

E(y) = E (P 2

1

D U + μ)= μ                                                     (10) 
 
and the variance of y is 
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PD-1/2 D-1/2P 
=PD-1 P     (11) 
 
The result stated in Equation (10) and (11) can be explained as 
if a random vector variable y has probability density function, 
then the constants μ of the quadratic form in the exponent are 
the mean value of y, and the inverse of the matrix of the 
quadratic form is the dispersion matrix of y. 
 
Steps of sampling 
 

 Let )p21 μ,...,μ,(μμ   and 
mmij  )( be the known 

mean vector and variance covariance matrix, 
respectively. 

 Carry out eigen analysis of the given variance 
covariance matrix Σ. Let λ1, λ2,…λm are m 
characteristic roots of the variance covariance matrix 
and their corresponding eigenvectors are [e1, e2,…,em] 
where 

 Construct a diagonal matrix 2

1

D , whose diagonal 
entries are the reciprocal of square root of the 
eigenvalues. 

 Generate a sample matrix from standard normal 
distribution of order n×m. 

 Then using y  = P 2

1

D U + μ transform it into y, the 
resultant data set obtained is a multivariate sample, 
whose estimated mean vector and estimated variance 
covariance matrix is approximately same as the 
population mean vector and covariance matrix. 

 
R codes for Multivariate Normal Sampling Using PCA 
(through Covariance Matrix) 

 
> x=matrix(c(4, 0, 0, 0, 9, 0, 0, 0, 
1),nrow=3,ncol=3,byrow=TRUE) 
>eigen=eigen(x) 
>eigen 
 
eigen() decomposition 
$`values` 
[1] 9 4 1 
 

$vectors 
[,1] [,2] [,3] 
[1,]    0    1    0 
[2,]    1    0    0 
[3,]    0    0    1 
 
>eigen_values=eigen$values 
>eigen_vector=eigen$vectors 
>eigen_vector 
[,1] [,2] [,3] 
[1,]    0    1    0 
[2,]    1    0    0 
[3,]    0    0    1 
>sqrt_values=sqrt (eigen_values) 
> D=diag (sqrt_values, nrow=3, ncol=3, names=T) 
> D 
[,1] [,2] [,3] 
[1,]    3    0    0 
[2,]    0    2    0 
[3,]    0    0    1 
> P=eigen_vector 

> P 
[,1] [,2] [,3] 
[1,]    0    1    0 
[2,]    1    0    0 
[3,]    0    0    1 
> U=matrix (NA, 3, 10000) 
>for (i in 1:3){ 
+   U[i,]=rnorm(10000,0,1)} 
> UD=D%*%U 
> y=t(P)%*%UD 
>cov(t(y)) 
 
 

 [,1]       [,2]       [,3] 
[1,] 3.99531331 0.03118828 0.02612224 
[2,] 0.03118828 9.08823815 0.01811803 
[3,] 0.02612224 0.01811803 0.99334097 
 

Assesment of the normality 
 

It is prudent to check that the new transform data follows the 
normal distribution. A popular approach is to be the probability 

plots of 
2
id  described by Healy (1968). 

Where, 
 

2
id = )()( 1 μμ  

ii yy (12) 

And, yi = (yi1, yi2, …,yim), )p21 μ,...,μ,(μμ   and 

mmij  )(
 

 
If the data have a multivariate normal distribution then, these 
plot will be linear; any systematic departure from linearity 
signifies departure from multivariate normality of the data. 

 

 
The normal probability plot forms a straight line, emphasizing 
that the sample generated from multivariate normal using 
PCA, is normally distributed. 
 
Conclusion 
 
From the above analysis we can see clearly that it is possible to 
generate sample from the multivariate normal distribution, 
using the Orthogonality property of principal components or 
more formally principal axes. The independence of eigen 
vectors work miraculously well. One point should be realize 
carefully that, in order to get good sample the size of the 
sample, generated from the standard normal distribution should 
be as large as possible. Since, we know that as the sample size 
increases, our estimate approaches to the population parameter.   
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