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INTRODUCTION 
 

Plant-parasitic nematodes cause substantial yield loss (20.6%) 
(Sasser, 1989) to various food and fibre crops worldwide 
(Sasser and Freckman, 1987). Among those plant
nematodes, Root-knot nematode, Meloidogyne
yield reduction of a wide range of crops (25% 
in tropical and sub-tropical agricultural are
Carter, 1985). Worldwide estimated monetary losses per year 
caused by plant-parasitic nematodes are over $100 billion 
(Perry, 1996). Nematicide though efficient for the control of a 
range of nematode species, the application of nematicide is
harmful to animals and humans, and may cause environmental 
pollution. Alternatives of chemical approaches for plant
parasitic nematode management include host resistance, crop 
rotation and the use of biological control agents. Microbial 
control can be broadly described as the use of microbial 
inoculums or their derived metabolites to reduce the pest 
populations below threshold density or to combat its disease 
establishment on susceptible plants. Microbial pathogens, 
antagonists and endophytes play a crucial role in the regulation 
of plant parasitic nematodes in various agro ecosystems 
(Mankau, 1980; Stirling,1991; Hallmann et al.,
1998; Akhtar and Malik, 2000). This microorganism has 
evolved many simple and complicated ways for affecting 
particular stages of life cycle of plant-parasitic nematodes. Till 
now, lots of microbial strains have been screened, and many 
have been found to be parasitic or antagonistic to plant
parasitic nematodes. Bacteria constitute a major group of soil 
microorganisms that are capable of preventing infections from 
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ABSTRACT 

parasitic nematodes cause serious yield loss of various agricultural crops. One strategy that has 
attracted the interest of researchers is the use of biocontrol agent for the management of these 
nematodes. As a group of biocontrol agent of plant-parasitic nematode, bacteria exhibit diverse modes
of action viz. parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; 
inducing systemic resistance of plants and promoting plant health. The aim of this review is to present 
some of the results of this work, indicating its potential and limitations.
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a wide range of nematode species including free living and 
parasites of plants and animals. There is a large body of 
literature on plant associated bacteria that have shown the 
capabilities to infect nematodes: 
Agrobacterium Arthrobacter, Ale
Azotobacter, Bacillus, Beijerinckia, Chromobacterium, 
Clavibacter, Clostridium, Comamonas, Corynebacterium, 
Curtobacterium, Desulforibtio, Enterobacter, Flavobacterium, 
Gluconobacter, Hydrogenophaga, Klebsiella, 
Methylobacterium, Pasteuria, Pseudomonas, Phyllobacterium, 
Phingobacterium, Rhizobium, Stenotrotrophomonas
Variovorax. Additionally, several human bacterial pathogens, 
such as species of 
Staphylococcus, Serratia, Streptococcus
reported to have antagonistic effects against nematodes 
(Becker et al., 1988; Gokte and Swarup
1997; Neipp and Becker, 1999; Sturz
al., 2004; Fravel, 2005; Compant
Rosenblueth and Martinez-Romero, 2006; Ryan
Saharan and Nehra, 2011; Maksimov
Bhattacharyya and Jha, 2012; 
used in biocontrol of plant parasitic nematodes can be 
categorized into two groups, parasitic bacteria a
parasitic bacteria (Siddiqui and Mahmood, 1999). These two 
groups differ in their mode of action. They act synergistically 
on nematodes by facilitating the rhizosphere colonization and 
activity of microbial antagonists.
 
Parasitic bacteria: Pasteuria 
forming, actinomycetes bacterium, can colonize more than 300 
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nematode species, including the majority of important PPNs 
and free-living nematodes (Mankau, 1980; Sayre and Starr, 
1988; De Leij et al., 1992; Sikora, 1992; De-Channer, 1997; 
Cho et al., 2000; Preston et al., 2003). Parasites of the genus 
Pasteuria have a similar life cycle in different hosts, which 
begins with bacterial spores attaching to nematode juveniles as 
they move in the soil (Viaene et al., 2006). These spores later 
germinate, form germ tubes that penetrate the developing 
juvenile and the germ tubes form primary colonies in the 
pseudocoelom (Chen and Dickson, 1998). Many daughter 
colonies that are formed from vegetative micro colonies form 
sporangia from which endospores are latter formed. The 
parasitized nematode survives but its fecundity will be greatly 
reduced with female adults containing as much as two million 
spores that are released into the soil (Sayre and Wergin,1977; 
Kerry, 1987; Tian et al., 2007). A single spore binding to the 
body wall of a J2 may be enough to cause infection and 
propagation of the parasite (Preston et al., 2003). There are 
four described species of Pasteuria and several undescribed 
species, viz., P. ramose, P. penetrans, P. thornei, P. 
Nishizawae. The most common and widespread species, 
Pasteuria penetrans, is mainly parasitic on Meloidogyne spp., 
while Pasteuria thornei parasitise lesion nematodes, 
Pratylenchus spp., and Pasteuria nishizawae infects cyst 
nematodes, Heterodera spp. and Globodera spp.; Pasteuria 
usgae infects Belonolaimus spp. (Sayre and Starr, 1988; 
Viaene et al., 2006). Pasteuria penetrans significantly reduced 
galling caused by Meloidogyne arenaria in tomato (Cho et al., 
2000). Pasteuria penetrans also reduced gall and egg mass in 
eggplant and soybean (Sharma and Vivaldi, 199). Generally, 
populations of this bacterium are only efficient parasites of the 
nematode species from which they originated. Similar studies 
on M. arenaria also resulted in reduction of root galling and 
overwintering juvenile populations over two subsequent 
seasons (Chen et al., 1996). Some of the key characteristics 
that make P. penetrans a successful biocontrol candidate are its 
ability to limit nematode reproduction, reduce infectivity of 
spore-bearing juveniles, and persist in soil for long periods and 
its resistance to desiccation and extreme temperatures 
(Siddiqui and Mahmood, 1999).  
 
Following the successful development of mass propagation 
methods of some Pasteuria isolates, a biocontrol product has 
since been commercialized for the control of soybean cyst 
nematodes (Wilson and Jackson, 2013). However, challenges 
still remain on the management of the broader community of 
plant parasitic nematodes because Pasteuria spp. has narrow 
host ranges. Many other Pasteuria species are known to infect 
nematodes like Pasteuria thornei infects Pasteuria usgae 
infects Belonolaimus spp., and Pasteuria nishizawae 
parasitizes. Their capacity to act as biological control agents is 
influenced by soil physical properties. The number of 
Pasteuria endospores available to infect nematodes is 
markedly influenced by soil textural properties such as 
macroporosity, microporosity and aggregate stability, and this 
probably explains why the parasite is an effective control agent 
in some situations but not in others (Mateille et al., 
2010).Although the use of P. penetrans to control RKN is 
promising, its inability to grow outside its hosts and its host 
specificity limits its commercial application as an effective 
biocontrol agent ( Jatala, 1986; Kerry, 1987; Becker et al., 
1988 ). 
 
Non parasitic bacteria: Some of these bacteria inhabit the 
rhizosphere, while others establish endophytic populations in 

specific ecological niches within the root (Hallmann et al., 
1997; Kloepper et al., 1999; Compant et al., 2010). However, 
regardless of their location, all are able to directly or indirectly 
promote plant growth. In many cases they suppress pathogens 
or other detrimental organisms by producing antibiotics, 
siderophores or lytic enzymes; by detoxifying or degrading 
pathogen virulence factors; or by inducing systemic resistance 
to pathogens (Compant et al., 2005). 
 
Rhizobacteria: Bacteria that colonize the rhizosphere are 
commonly referred to as rhizobacteria. Kloepper and Schroth 
(1978) coined the term ‘Plant Growth Promoting 
Rhizobacteria’ (PGPR) for rhizobacteria capable of enhancing 
plant growth. PGPR represent all beneficial rhizobacteria 
which are naturally occurring, free-living soil bacteria that are 
able to colonize roots and enhance plant growth when added to 
seeds and roots (O’Sullivan and O’Gara, 1992; Sikora and 
Hoffmann-Hergarten 1993; Ramazan et al., 2018). Plant health 
promoting Rhizobacteria (PHPR) are those bacteria that 
stimulate plant growth by limiting plant pathogens or parasites 
(Sikora, 1988; Weller and Thomashow,1993; Sikora. and 
Hoffmann-Hergarten, 1993; Castaneda-Alvarez  and Aballay, 
2016). Pseudomonas is among the most effective rhizospheric 
bacteria which ameliorate plant growth by restricting the 
parasitic root pathogens (Oostendorp and Sikora, 1989) 
through the production of biologically active substances or the 
conversion of unavailable minerals and organic compounds 
into forms that are available to plants (Siddiqui and Mahmood, 
1999). They also play an important role in decomposition, 
biodegradation and the carbon and nitrogen cycles and 
improve seed germination, root development, mineral 
nutrition, water utilization (Weller, 1988). Bacillus spp. also 
have an important role in plant growth promotion by 
enhancing the biosynthesis of plant hormones, gibberellic acid 
(GA3) and indole-3-acetic acid (IAA) that have a close relation 
with plant nutrient availability. Higher level of plant growth-
promoting hormones (GA3 and IAA) and defense-related 
enzymes such as peroxidase (PO), polyphenol oxidase (PPO) 
and superoxide dismutase were detected in B. subtilis OTPB1 
treated plants compared with non-treated plants (Chowdappa et 
al., 2013; Cleopas et al., 2017). 
 
Endophytic bacteria: Bacteria that reside in the internal 
tissues of living plants without causing any negative effects, 
have been found in every plant species and recognized as 
potential sources of novel natural products (Guo et al., 2008). 
Endophytic bacteria can form a range of different relationships 
including symbiotic, mutualistic, commensalistic and 
trophobiotic. Endophytic microorganisms have an important 
role in host protection as they are associated with beneficial 
effects such as plant growth promotion and bio control 
potential against plant parasitic nematodes (Hallmann et al., 
1998; Sturz et al., 2000; Jonathan and Umamaheswari, 2006). 
Endophytes colonize the same root tissues as sedentary plant-
parasitic nematodes as (i) there is a continuum of root 
associated organisms from the rhizosphere to the rhizoplane or 
to the epidermis to the cortex (Kloepper et al., 1992); and (ii) 
endophytic bacteria in roots are mostly derived from the 
rhizosphere (Compant et al., 2010). Therefore, this association 
of endophytic bacteria with nematodes throughout the 
nematode life cycle makes these bacteria excellent candidates 
for biocontrol strategies. Most research on the interaction of 
endophytic bacteria with nematodes has been conducted on 
root knot nematode, Meloidogyne spp.(Mekete et al., 2009), 
but the association of cyst nematodes, Globodera rostochiensis 
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is also of great interest (Hallmann et al., 2001, Siddiqui et al., 
2000 ; Ali et al., 2002). Bacterial antagonists, Rhizobium etli 
G12 leads to a reduction in the number of juveniles that 
penetrate the root and ultimately the number of galls and egg-
masses production in M.incognita (Martinuz et al., 2013).Nine 
endophytic bacteria were listed and investigated for biological 
control of nematodes by Sikora et al., (2007).Most endophytes 
appear to originate from the rhizosphere or phyllosphere; 
however, some may be transmitted through the seed. 
Endophytic bacteria have the potential to remove soil 
contaminants by enhancing phyto remediation and may play a 
role in soil fertility through phosphate solubilization and 
nitrogen fixation (Ryan et al., 2008). 
 
Mode of action of nonparasitic bacteria: Potential targets of 
nonparasitic bacteria are nematode eggs, juveniles in the soil 
and sedentary adults on the host roots. Thus the antagonists 
affect egg hatching, movement of the juveniles through the soil 
and their attraction and orientation to the host roots, 
recognition of host tissue and feeding sites, penetration of root 
tissues (Neipp and Becker 1999).The mechanism by which 
antagonistic bacteria inhibit plant-parasitic nematodes have 
been put forth by Sikora and Hoffmann-Hergarten, 1993; 
Hallmann 2001; Siddiqui et al., 2001. 
 

 Production of antibiotics (metabolic products), enzyme, 
toxins that kill, inhibited or repelled nematode. 

 Degradation of the root exudates that the nematode 
relies on for host location and to stimulate egg hatch. 

 Induction of systemic acquired resistance (SAR). 
 
Production of antibiotics (metabolic products), enzyme, 
toxins that kill, inhibited or repelled nematode: Metabolites 
produced by some bacteria, especially Bacillus spp., 
Pseudomonas spp. and Burkholderia spp. interfere with 
nematode behaviour, feeding and reproduction, thereby 
reducing penetration and damage in plants (Sikora and 
Hoffmann-Hergarten, 1992; Meyer et al., 2000; Viaene et al., 
2006). Exuded metabolites reduce hatch and attraction and/or 
degradation of specific root exudates which control nematode 
behavior and alter the nematode-plant recognition process or 
create a hostile environment for nematodes in the rhizosphere 
(Sikora and Hoffmann-Hergarten, 1993; Mankau, 1995; 
Siddiqui and Shahid 2003). Bacillus species synthesize various 
types of lipopeptides with specific activities against plant 
pathogens which give them a unique importance in agriculture. 
The metabolites produced by Bacillus spp. are amphiphilic and 
surfactant lipopeptides mainly bacitracin, circulins, 
polymyxins, tyrocidins and surfactin (Brandbury, 1986). Gong 
et al., (2015) reported those lipopeptides as bacillomycins, 
iturins and mycosubtilin. Most of the metabolites are produced 
at the onset of sporulation (Mankau, 1995).Those by-products 
of Bacillus spp. inhibit egg hatching, reduce juvenile survival 
and/or kill nematodes directly, reduce root penetration and 
migration (Oostendorp and Sikora, 1989;Racke and Sikora, 
1992; Sikora and Hoffmann-Hergarten, 1992; Oka et al., 1993; 
Meyer, 2003; Padgham and Sikora, 2007;Tian et al., 2007;Lian 
et al., 2007; Zhang et al., 2012; Adam et al., 2014).The crude 
metabolites produced by strains of B. cereus, B. megaterium, 
B. pumilus, B. subtilis, B. thuringenisis, Enterobacter 
asburiae, E. cloacae and Paenibacillus macerans caused high 
mortality in J2 of Meloidogyne spp.( Spiegel et al., 1991; 
Devidas and Rehberger, 1992; Nagesh et al., 2005; Padgham 
and Sikora.,2007;Huang et al., 2009; Ying et al., 2010;Lee et 
al., 2016). Siddiqui et al., (2006) have reported production of 

metabolites, including HCN and 2, 4-diacetylphloroglucinol 
(DAPG) by Pseudomonas fluorescens strains CHA0. 
Production of antimicrobial compounds including Phl and Plt 
by P. fluorescens plays a crucial role in the suppression of 
root‐knot nematode. The ability of P. fluorescens strain F113 
to produce diacetylphloroglucinol (DAPG) was responsible for 
the increased hatching ability and the reduction in juvenile 
mobility of Globodera rostochiensis. Similar effects on egg 
hatchability and juvenile mobility of G. rostochiensis were 
obtained in vitro in the presence of synthetic DAPG (Cronin et 
al., 1997). Pseudomonas chlororaphis O6 induce mortality in 
J2 of root-knot nematodes and inhibit egg hatch (Lee et 
al.2011;Nandi et al., 2015;Kang et al., 2018). B. cereus S2 can 
produce some secondary metabolites, sphinganine and 
phytosphingosine, that cause a robust of reactive oxygen 
(ROS) in the intestinal tract of nematode thereby induce 
oxidative injury, cell apoptosis and cell necrosis on the 
reproductive area of Meloidogyne incognita and 
Caenorhabditis elegans and destroy the internal structure of 
nematode, therefore make lethal effect on nematode as well as 
suppress nematode reproduction(Gao et al., 2016). 
Corynebacterium paurometabolu inhibits nematode egg 
hatching by producing hydrogen sulphide (Mena and Pimentel, 
2002). Siddiqui and Ehteshamul-Haque, (2000), Insunza et al., 
(2002) and Siddiqui et al., (2003) showed that endophytic 
bacteria produced specific metabolites, which can inhibit hatch 
of eggs and the mobility of the second-stage juveniles of 
nematodes. 
 
Bacillus spp. can synthesize various molecules that are toxic to 
nematodes. Bacillus thuringiensis (Bt) the ideal biopesticide, 
known to specifically kill caterpillars and beetles is also 
reported to target nematode populations. B. thuringiensis 
shows nematicidal activity towards M. incognita and 
Heterodera glycines by producing crystal inclusions (Cry 
proteins), a toxic proteins during sporulation (Noel, 1990; 
Zukerman et al., 1993;Leyns et al., 1995).Currently, three 
families of Cry proteins have been found to exhibit potent 
activities against the juveniles of nematodes (Cry5, Cry12, 
Cry13, Cry14, and Cry21 in the Cry5 family, Cry6 in the Cry6 
family, and Cry55 in the Cry55 family) (Waele et al., 1995; 
Dhawan et al., 2004).Prasad et al., (1972) and Chen et al., 
(2000) reported that populations of Meloidogyne incognita and 
M.hapla were significantly reduced by treatment with B. 
thuringiensis var. thuringiensis. Bacillus nematocida B16, 
using a Torjan horse mechanism lures nematodes to their 
death. It is reported to be highly nematicidal against the 
nematode Panagrellus redivivus. This bacterium secrets 
benzaldehyde and 2-heptanone, as volatile organic compounds 
to attract nematodes. After the nematode has consumed it as 
food, it secretes a range of extracellular proteases which lyses 
the intestinal tissues, eventually killing it (Huang et al., 
2005a). B. firmus is suggested the involvement of toxins which 
is effective against Meloidogyne spp., Ditylenchus dipsaci 
(Mendoza et al. 2008), Rodopholus similis (Mendoza et al., 
2008), Heterodera spp., Tylenchulus semipenetrans, 
Xiphinema index (Keren-Zur et al., 2000).Pseudomonas 
aeruginosa and Bacillus subtilis are reported to be highly 
nematicidal against Meloidogyne javanica by producing toxin 
(Siddiqui,2002). Pseudomonas fluorescens Pf1 and Bacillus 
subtilis BSt are reported to be highly nematicidal against 
Rotylenchulus renifomis by producing toxin (Niknam and 
Dhawan, 2002a, 2002b). Qaiser et al., (2017) identified Cyclo 
(d-Pro-l-Leu) produced by Bacillus amyloliquefaciens Y1 as a 
nematicide for control of M. incognita. Franco et al., (2007) 

6772                                              International Journal of Current Research, Vol. 11, Issue, 09, pp.6770-6779, September, 2019 
 



and Qin et al., (2011) reported one bacterial group of 
actinobacteria, which are known to produce bioactive 
compounds, trigger induced systemic resistance, and also have 
the capacity to colonize roots. Bacteria that degrade soil 
amendments (degrades chitin) release nematicidal compounds 
(ammonia) to kill most nematodes in soil (Spiegel et al., 1991). 
Bacillus species are capable of producing enzymes like 
chitinase and β-1, 3-glucanase having a very strong lytic 
activity (Tian et al., 2000; Li et al., 2002; Ha et al., 2014; 
Castaneda-Alvarez  and Aballay ,2016). Chitinase produced by 
Paenibacillus illinoisis KJA-424 caused the lysis of M. 
incognita eggshell and resulted in the inhibition of egg 
hatching in vitro (Jung et al., 2002; Khan et al., 2008). The 
wide distribution of cuticle-degrading proteases in Bacillus 
strains with nematicidal activity suggested that these enzymes 
likely play an important role in bacteria-nematode plant 
environment interactions and that they may serve as important 
nematicidal factors in balancing nematode populations in the 
soil. B. subtilis produce hydrolytic enzyme such as protease, 
lipases, b-gluconase and cellulase which are responsible for 
nematode mortality (Miller and Sands 1977;Chantawannakul 
et al., 2002;Qiuhong et al., 2006; Tian et al., 2007).Bacillus 
pumilus L1 produce both protease and chitinase, 2-
methylbutyric Acid besides promoted tomato plant growth 
when infested by M.arenaria (Wei et al., 2010; Lee and Kim, 
2015; Lee et al., 2016). Huang et al., (2005b) reported that 
Brevibacillus laterosporus G4 without parasporal crystals 
having extracellular protease can infect nematodes. 
Pseudomonas fluorescens can synthesize enzymes that can 
monitor the level of plant hormones and limit the available iron 
via siderophores (Glick, 1995 ;VanLoon et al. 1998; Siddiqui 
et al., 2005). The use of ACC deaminase-producing plant 
growth promoting bacteria, Pseudomonas putida UW4 has 
been shown to be a useful strategy to reduce the damage due to 
Bursaphelenchus xylophilus (Nascimento et al., 2013). 
 
Degradation of the root exudates that the nematode relies 
on for host location: Plant growth-promoting rhizobacteria 
may interfere with host identification through receptor 
blockage on the roots or by modifying root exudates of the 
host plant, thus hindering the attraction, hatching or 
penetration behaviour of the nematodes (Oostendorp and 
Sikora 1986;Becker et al., 1988; Oostendorp and Sikora 1990; 
Spiegel et al., 1991; Sikora, 1992; Sikora and Hoffmann-
Hergarten, 1993; Siddiqui and Mahmood, 1999). Franken et 
al., (1990) demonstrated that attraction of the cyst nematode, 
Globodera pallida to sugar beet tubers was reduced following 
tuber treatment with Agrobacterium radiobacter. Host 
recognition was controlled by the interaction between root 
surface lectin and nematode cuticular carbohydrate. PHPR may 
induce biological control by binding lectins which are required 
in host recognition. B. subtilis was reported to promote plant 
growth by producing growth regulators, including root 
exudation and enhancing the availability of nutrients to plants 
besides control of soil-borne pathogens (Weller, 1988). These 
characteristics make these species good candidates for use as 
seed inoculants and root dips for biological control of soil-
borne plant pathogens. Bacillus sphaericus and Agrobacterium 
radiobacter have been shown to reduce hatching of two 
species of cyst nematodes (Oostendorp and Sikora, 1989; 
Racke and Sikora, 1992).Among plant growth-promoting 
rhizobacteria Pseudomonas putida, Pseudomonas aeruginosa, 
Bacillus subtilis caused greater inhibitory effect on the 
hatching and penetration of M. javanica (Siddiqui,2002; 
Siddiqui et al., 2007).Inhibition of Criconemella xenoplax egg 

hatch by Pseudomonas aureofaciens was observed by Wescott 
and Kluepfel (1993). P. fluorescens strain CHA0 and its GM 
derivative CHA0/pME3424 caused mortality of M. 
javanica juveniles in vitro and reduced nematode penetration 
in mung bean roots under glasshouse conditions(Siddiqui, 
2005; Bakker et al., 1991;Gamliel and Katan, 1993) Bacillus 
spp., Pseudomonas spp. and Telluria chitinolytica have been 
shown to inhibit penetration of nematodes into the roots 
thereby reducing root galling (Becker et al., 1988; Oostendorp 
and Sikora, 1990). Root and soil populations of the rice root 
nematode, Hirschmanniella oryzae, were reduced following 
the application of P. fluorescens as a seed treatment 
(Swarnakumari et al., 1999). Application of P. chitinolytica 
reduced the penetration rate of juveniles of root-knot 
nematodes in tomato (Spiegel et al., 1991). Fewer galls and 
egg masses of M. incognita were observed following treatment 
of tomato roots with P. fluorescens strain PF1 (Santhi and 
Shivakumar, 1995). 
 
Induction of systemic acquired resistance (SAR): Induced 
resistance (both ISR and SAR) has been documented for plant-
parasitic nematodes. When a pathogen attacks a plant, the non-
infected plant tissues acquire an ability to resist the subsequent 
attack; this type of broad spectrum and long-term ability of 
plants is known as systemic acquired resistance (SAR). The 
ability of plants to develop ISR in response to root colonization 
by non-pathogenic bacteria depends on the interactions 
between the colonizing rhizobacterium and host plant (Van 
Loon et al., 1998; Pieterse et al., 2002). The onset of systemic 
acquired resistance (SAR) is characterized by expression of 
genes for pathogenesis-related proteins such as chitinase and 
peroxidase (Jonathan and Umamaheswari, 2006; 
Ramamamurthy et al. 2001; Jeunn et al., 2004; Siddiqui and 
Shaukat, 2002; Mohamed and Hammad, 2003). PPO, POD and 
PAL are important defense enzymes of plants, which are 
positively correlated with the plant systemic resistance against 
pathogens. Enzymes induced by systemic resistance cannot 
directly induce nematode mortality; rather, they cause 
abnormal females and as a result lower nematode fecundity. 
Treatment with P. fluorescens induced the activity of 
peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, 
catalase and chitinase in tomato against M. incognita (Wei et 
al., 1996; Pieterse et al., 2002), Anita et al., 2004); Mohamed 
and Hassabo, 2005). Andress et al. (2008) found that POX 
increased in the roots of a resistant line of wheat H-93-8 
compared with the susceptible line in response to cereal cyst 
nematode, Heterodera avenae. The Cre2 gene (resistance 
gene) in this line inhibited reproduction of this nematode. POX 
catalyzes the formation of lignin through polymerization of 
phenols. Siddiqui and Shaukat (2002) found that secondary 
metabolite 2-4 diacetylphloroglucinal producing P. fluorescens 
strain CHA0 induced systemic resistance against root-knot 
nematode in tomato. P. fluorescens induced ISR against M. 
javanica (Siddiqui and Shaukat, 2004) and Heterodera 
schachtii, and also reduced early root penetration (Oostendrop 
and Sikora, 1990). Sikora (1988) demonstrated that Bacillus 
subtilis induced systemic protection against M. incognita in 
cotton. B. subtilis GB03 originate volatile compounds that 
regulate ethylene biosynthesis enzymes, as well as ethylene 
biosynthesis related genes (ERF1, GST2, and CHIB). It also 
regulated jasminic acid- and SA-mediated defense mechanism 
(Ryu et al., 2004). Salicylic acid (SA) production by bacteria 
acts as an endogenous signal for the activation of certain plant 
defense responses after pathogen attack. Bacillus sphaericus 
B43 and Rhizobium etli G12 triggered ISR against potato cyst 
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nematode by reducing the juvenile penetration of the roots on 
the responder side when the bacteria were applied as an 
inducer to the other half of root system (Hasky- Gunther et al., 
1998; Reitz et al., 2000). These two bacteria also caused ISR 
against M. incognita on tomato by reducing the J2 penetration 
on the responder root side (Ongena and Jacques, 2008; 
Siahpoush et al., 2011; Adam et al., 2014).B. sphaericus strain 
B43 was investigated for the induced resistance 
against Globodera pallida in potato roots by split root system. 
It was observed that, both living and heat-killed bacterial cell 
effectively reduced the incidence of G. pallida in potato roots 
(Hasky-Gunther et al., 1998). Kloepper et al., (2004) and Xia 
et al., (2011) investigated the elicitation abilities of B. 
subtilis, B. cereus, B.amyloliquefaciens, B.pasteurii, B. 
sphaericus, B. pumilus and B. mycoides for induced resistance 
in tomato, muskmelon, bell pepper, sugar beet, watermelon, 
tobacco, Arabidopsis sp., loblolly pine, cucumber, and green 
kuang futsoi and long cayenne pepper against various 
pathogenic diseases including root-knot nematodes under 
green house and field conditions. Gao et al., (2016) and Hu et 
al., (2017) also observed that B. cereus induce systemic 
resistance in tomato infested by M.incognita. 
 
Mass-production, formulations and application methods: 
Inoculum quality, mass-production and formulation methods 
of antagonistic microorganisms have been crucial point for 
commercialization. Another major challenge is the low yield of 
the active desirable compound obtained from the cultures (Yu 
et al., 2010). Genetic engineering technology which identifies 
the regulatory gene/s in the biosynthesis pathway of the active 
compound can lead to increase production of the bioactive 
compounds (Radic and Strukelj, 2012). Stable growth and 
development of biological agent under field conditions is a 
major problem due to adverse environmental conditions. The 
formulation that can enhance the shelf-life of bacterial product 
during storage, transportation and also during field application 
is also important. Formulations that are compatible with the 
delivery of microbial agents through drip irrigation systems 
may also enable precise application and reductions in 
inoculums rates. Procedures have been defined for risk 
assessments of biological control agents released into the 
environment (Kiewnick et al., 2004) and some studies have 
been done on the impact of releases on the rhizosphere 
microbial community (O’Flaherty et al., 2003).The application 
of rhizosphere bacteria as seed treatments (Oostendorp and 
Sikora, 1989) and endophytic fungi as bare root dips (Pinochet 
et al., 1998) or in tissue cultured plantlets (Sikora,2001) or in 
row treatments provide an opportunity for the large scale use 
of biological control. 
 
Conclusion 
 
Rigorous laboratory and field screening activities have 
discovered several microorganisms for the development of 
biopesticides. The main considerations for the practical 
adoption of biological control agents are the exposition of their 
mode of action, development of such formulation that can be 
used with other pesticides with synergetic effect, stability 
under field application, and perfect demonstration of cost 
benefit ratio. Increased understanding of the molecular basis of 
the various pathogenic/antagonistic mechanisms of the bacteria 
could potentially enhance their value as effective biological 
control agents. Understanding the ecological basis of the 
interactions among these co-applied biocontrol agents will 
greatly help in maximizing their performance. The primary 

obstacle in commercializing a biocontrol agent for usage by 
farmers is the inconsistent field performance. Since, biocontrol 
agents have to act in soil in presence of different factors like 
adaphic conditions, weather, and soil inhabiting microbes, 
which may have synergistic or antagonistic effect on their 
activity. Rational management decision can be made only by 
analyzing the interactions that occurring naturally among host 
plant, nematode target, soil microbial control agent and 
environment. Ultimately, lots of commercial products based on 
bacteria are likely to be developed, and they will be marketed 
on the basis that they promote plant growth or reduce 
nematode population and other soil borne pathogens. 
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