

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 11, Issue, 11, pp.8001-8006, November, 2019

DOI: https://doi.org/10.24941/ijcr.36992.11.2019

RESEARCH ARTICLE

THE EFFECT OF THYMUS VULGARIS ESSENTIAL OIL ON THE VIABILITY OF EUKARYOTIC CELLS

Flores-Encarnación, M.^{1,}, Morales-Baéz, J.R.¹, Aguilar-Gutiérrez, G.R.², Cabrera-Maldonado, C.³, Silvia del Carmen García-García⁴

¹Laboratorio de Microbiología Molecular y Celular. Laboratorio 421 Edif. EMA1. Biomedicina, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Puebla. México

²Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca Morelos, México

³Depto de Microbiología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Puebla. México

⁴Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México

ARTICLE INFO ABSTRACT

Article History: Received 14th August, 2019 Received in revised form 18th September, 2019 Accepted 25th October, 2019 Published online 26th November, 2019 Bacterial resistance to antibiotics has led to the search for new substances with bactericidal activity. Among them are some extracts of plant origin, such as some essential oils, which have shown a potent antimicrobial action. At present, the antimicrobial properties of the essential oil of *Thymus vulgaris* have been studied. It has been reported that *T. vulgaris* essential oil has shown high antibacterial activity against *Salmonella enteritidis*, *S. choleraesuis*, *S. typhimurium, Vibrio cholerae, Proteus mirabilis, P. vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, S. epidermidis, Enterococcus faecalis, Bacillus cereus, Escherichia coli.* In the present work, the effect of *T. vulgaris* essential oil on the viability of eukaryotic cells was studied.

Key Words:

Essential oil, Bacteria, Yeast, *Thymus vulgaris*, Viability, Antimicrobial.

Copyright © 2019, Francis Essacu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Flores-Encarnación, M., Morales-Baéz, J.R., Aguilar-Gutiérrez, G.R., Cabrera-Maldonado, C., Silvia del Carmen García-García. 2019. "The effect of thymus *vulgaris* essential oil on the viability of eukaryotic cells", *International Journal of Current Research*, 11, (11), 8001-8006.

INTRODUCTION

At present, different essential oils with antibacterial properties are known. They have even been proposed as an alternative to treat infections caused by bacteria that have developed resistance to antibiotics (Daferera *et al.*, 2003; Flores-Encarnación *et al.*, 2016; Marston *et al.*, 2016). Some oils have been used in food preservation, pharmaceutical, agronomic, aromatherapyand fragrance industries (Prabuseenivasan *et al.*, 2006; Saranra and Devi, 2017). In regard to its antibacterial properties, essential oils have demostrated a significant inhibitory effect; so cinnamon, clove, geranium, lemon, lime, orange, rosemary, aniseed, eucaliptus, camphor, thyme oils, have showed antibacterial activity against bacteria both Gramnegative and Gram-positive (Boskovica *et al.*, 2015; Prabuseenivasan *et al.*, 2006). It has been reported that thyme (*T. vulgaris*) essential oil showed high antibacterial activity against Salmonella enteritidis, S. choleraesuis, S. typhimurium, Vibrio cholerae, Proteus mirabilis, P. vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, S. epidermidis, Enterococcus faecalis and Bacillus cereus (Al-Shuneigat et al., 2014; Hussein et al., 2014; Kon and Rai, 2012; Mohsenipour and Hassanshahian, 2015).

In recent study, the growth and biofilm formation of uropathogenic *E. coli* was completely inhibited at low concentrations of *T. vulgaris* essential oil (Flores-Encarnación *et al.*, 2018). On the other hand, most of the works described in the literature refer to the effect of *T. vulgaris* as an antibacterial substance, however little is known about the effect of this essential oil in cells of higher organisms. Therefore, in the present work, the effect of *T. vulgaris* essential oil on the viability of eukaryotic cells was studied.

^{*}Corresponding author: Flores-Encarnación, M.,

Laboratorio de Microbiología Molecular y Celular. Laboratorio 421 Edif. EMA1. Biomedicina, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Puebla. México.

MATERIALS AND METHODS

Source of Material: In this study, a commercial essential oil of *T. vulgaris* was used. It was obtained from a flavour and fragrance company at Puebla, México.

Biological Material: The *Saccharomyces cerevisiae* and *Candida albicans* strains were used. *S. cerevisiae* strain from yeast marketed to make bread, while *C. albicans* strain from clinical isolates. The identity of *C. albicans* strain was confirmed using the germ tube test as described by Moya-Salazar and Rojas (2018). Yeasts were stored at -40°C in yeast peptone dextrose (YPD) broth with 20% glycerol until analysis. A freshly prepared erythrocyte suspensión was also used. The strain of uropathogenic *E. coli* CFT073 was used. Bacterial strain was stored in cryovials at -40°C until analysis.

Culture: *S. cerevisiae* and *C. albicans* strains were cultivated on yeast peptone dextrose (YPD) broth containing amoxicillin $(16\mu g/mL)$ and gentamicin (40 $\mu g/mL$) and the following components of medium (g/L): 10 yeast extract, 20 peptone and 20 dextrose. Cultures were grown aerobically at 30°C in a 50 mL-working-volume Erlenmeyer flask stirred at 200 rpm for 24 hours. The yeast peptone dextrose agar plates containing 20 mL of medium were prepared. Sterile Petri dishes (150 mm) were used. Plates were inoculated by crossstriation with *S. cerevisiae* and *C. albicans*. The uropathogenic *E. coli* strain was cultured at 37°C for 18 to 24 h in trypticase soy broth (BBL Microbiology Systems, Cockeysville, Md). Then, *E. coli* that had been cultured in trypticase soy broth was seeded crosswise in a trypticase soy agar plate, and was incubated at 37°C for 24 h.

Antimicrobial Activity of T. vulgaris: The antimicrobial activity of T. vulgariswas determined using the technique of diffusion in agar using paper discs. For it, tripticasein soy agar plates (containing 20 mL of medium) were prepared. Sterile Petri dishes (150 mm) were used. Plates were inoculated by crossstriation with uropathogenic E. coli. Each inoculum contained approximately 10⁶ CFU mL⁻¹. Then, sterile filter paper disks (5 mm diameter) were placed on the surface of tripticasein soy agar plates. Different concentrations (0.66 to 13.2 mg mL⁻¹) of the essential oil were used. The agar plates were incubated at 37°C for 24 h. The diameters of the inhibition halos formed were measured. The analyses were conducted in triplicate. Similarly, yeast peptone dextrose agar plates (containing 20 mL of medium) were prepared. Plates were inoculated by crossstriation with S. cerevisiae and C. albicans. Sterile filter paper disks were placed on the surface of yeast peptone dextrose agar plates and different concentrations (1.3, 3.9, 6.5, 9.1 and 13.2 mg mL⁻¹) of essential oil were used. The agar plates were incubated at 30°C for 24 h. The diameters of the inhibition halos formed were measured. As reference, yeast peptone dextrose agar plates were inoculated by crossstriation with C. albicans and sterile filter paper disks were placed on them, adding different concentrations (0.25, 0.75, 1.25, 1.75 and 2.5 µg) of amphotericin B. The agar plates were incubated at 30°C for 24 h.

Cell Viability Assay: The cell viability assay was performed using *S. cerevisiae* and *C. albicans* cells and a freshly prepared erythrocyte suspensión, according to methodology described by Castillo *et al.*, (2009). For this, 10 μ L of *S. cerevisiae* and *C. albicans* 24-hour precultures were used (growing in yeast

peptone dextrose broth at 30°C and stirring at 200 rpm). The cell viability assay was determined by mixing 10 μ L of culture with 10 µL of 0.4% trypan blue, incubating 5 minutes at room temperature. Then, 10 µL of cell suspension were placed in a Neubauer chamber for observation at 40x. Dead cells were observed in a deep blue color. All determinations were made in duplicate. For negative control, non-viable cells of S. cerevisiae were used. This cells were obtained by heating at 50°C for 20 minutes. To determine the cell viability in erythrocytes, it was used a freshly prepared erythrocyte suspension. For this, 1 μ L of whole blood was used and 99 μ L of isotonic saline was added. The cell viability was determined by mixing 10 µL of erythrocyte suspension with 10 µL of 0.4% trypan blue, incubating 5 minutes at room temperature. Then, 10 µL of erythrocyte suspension were placed in a Neubauer chamber for observation at 40x. All determinations were made in duplicate.

The Effect of *T. vulgaris* on Cell Viability: To determine the effect of *T. vulgaris* on cell viability, 50 μ L of *S. cerevisiae* and *C. albicans* were mixed with different concentrations of *T. vulgaris*: 1.3, 3.9, 6.5 y 9.1 mg, incubating 10 min at room temperature. The cell viability assay was determined by mixing 10 μ L of the previous mix with 10 μ L of 0.4% trypan blue. Then, 10 μ L of cell suspension were placed in a Neubauer chamber for observation at 40x. Similarly, 10 μ L of erythrocyte suspension (described above) were mixed with different concentration of *T. vulgaris* in the order: 1.3, 2.6 and 3.9 mg, and incubated 10 min at room temperature. The cell viability was determined by mixing 10 μ L of erythrocyte suspension with 10 μ L of 0.4% trypan blue; 10 μ L were placed in a Neubauer chamber for observation at 40x. All determinations were made in duplicate.

RESULTS

To determine the antibacterial activity of T. vulgaris essential oil, the technique of diffusion in agar was used. For this, the uropathogenic E. coli strain was seeded crosswise in a trypticase soy agar plate and sterile filter paper disks were placed on the surface of agar plates. Different concentrations of essential oil were placed on paper disks: 0.66, 1.3, 3.9, 6.5 and 13.2 mg mL⁻¹. The agar plates were incubated at 37°C for 24 h. Similarly, the yeast peptone dextrose agar plates were inoculated by crossstriation with S. cerevisiae and C. albicans and different concentrations of essential oil were used: 1.3, 3.9, 6.5, 9.1 and 13.2 mg mL⁻¹. The agar plates were incubated at 30°C for 24 h. The results obtained are shown in the Fig. 1. As shown in Fig. 1A, the T. vulgaris essential oil completely inhibited the growth of uropathogenic E. coli. This inhibitory effect was observed at all concentrations tested. As seen in Fig. 1A, the surface of trypticase soy agar plate was bright and free of bacterial growth. In Fig. 1B, the antifungal activity of T. vulgaris essential oil is shown. As seen in this figure, T. vulgaris had a different effectin growth of S. cerevisiae: the growth on the surface of yeast peptone dextrose agar plates was observed at the concentrations tested. Regarding the growth of C. albicans, the T. vulgaris essential oil produced inhibition of yeast growth, however the inhibition was not as strong as observed with the growth of E. coli (Fig. 1C). The growth inhibitory effect with T. vulgaris was greater in C. albicans than in effect observed with S. cerevisiae. T. vulgaris showed greater antifungal activity in C. albicans. To compare the antimicrobial effect of T. vulgaris, different concentrations of amphotericin B were used: 0.25, 0.75, 1.25, 1.75 and 2.5 µg.

Fig. 1. The effect of *T. vulgaris* essential oil in microbial growth.A. Uropathogenic *E. coli*; B. *S. cerevisiae*; C. *C. albicans*; D. Growth of *S. cerevisiae* in the presence of amphotericin B; E. Growth of *C. albicans* in the presence of amphotericin B; F. Control condition (*C. albicans*). In all cases, the test substance was placed on the paper disk counterclockwise starting with the paper disk located at the top

Table 1. Effect of T. vulgaris essential oil in cell viability

	T. vulgaris					
Eukariotic cell	0 mg	1.3 mg	3.4 mg	6.5 mg	9.1 mg	13 mg
	42271271222	2.00000000	en Chelinie			
S. cerevisiae	100%ª	82%	55%	30%	0%	0%
C. albicans	100%	76%	44%	0%	0%	0%
Erythrocytes	100%	59%	38%	0%	0%	0%

^aThe cell viability was expressed as percentage rate with respect to living cells in absence of *T. vulgaris*.

So, the yeast peptone dextrose agar plates were inoculated with *C. albicans* and sterile filter paper disks were added with amphotericin B and were incubated at 30°C for 24 h. The results obtained are shown in the Fig. 1D and E. As shown in Fig. 1D, amphotericin B had no effect on the growth of *S. cerevisiae* at the concentrations tested. The inhibition halos formation of growth was not observed. The Fig. 1E shows the growth of *C. albicans* in the presence of amphotericin B. As can be seen, the growth inhibition at the highest concentrations of amphotericin B was recorded. *C. albicans* strains were more sensitive to the presence of the antifungal tested compared to *S. cerevisiae*. However, in both cases at these concentrations of amphotericin B it was not possible to observe the effect recorded with *T. vulgaris*. In order to determine the

effectiveness of the essential oil of *T. vulgaris* in a short time (10 min), the cell viability assay was performed using *S. cerevisiae*, *C. albicans* and anerythrocyte suspensión. So, 50 μ L of *S. cerevisiae* and *C. albicans* were mixed (independently) with different concentrations of *T. vulgaris*: 0, 1.3, 3.9, 6.5, 9.1 and 13 mg and incubating 10 min at room temperature. For cell viability assay, 10 μ L of the previous mix with 10 μ L of 0.4% trypan blue were mixed. Then, 10 μ L of cell suspension were placed in a Neubauer chamber for observation at 40x. The results obtained are shown in the Table 1. As shown in Table 1, the percentage of viable *S. cerevisiae* cells decreased by 28% when they were exposed at 1.3 mg of *T. vulgaris* for 10 min. At a *T. vulgaris* concentration of 6.5 mg, the viability of *S. cerevisiae* cells was 30%.

At concentrations of 9.1 and 13 mg of T. *vulgaris*, the *S. cerevisiae* cells were completely lysed. In the case of *C. albicans* cells, a greater decrease in viability was observed, when the yeast was subjected to the action of *T. vulgaris*. As shown in Table 1, the percentage of viable *C. albicans* cells decreased by 24% when they were exposed at 1.3 mg of *T. vulgaris*. At a *T. vulgaris* concentration of 3.4 mg, the viability of *C. albicans* cells was 44%. At concentrations of 6.5, 9.1 and 13 mg of *T. vulgaris*, the *C. albicans* cells were completely lysed. To determine the effect of *T. vulgaris* in erythrocytes, the cell viability test was performed using trypan blue, considering as intact erythrocyte cells those that do not stain with the dye. For that, 10 μ L of an erythrocyte suspension were mixed with different concentration of *T. vulgaris*: 1.3, 2.6 and 3.9 mg, and incubated 10 min at room temperature.

Then, 10 μ L of erythrocyte suspension with 10 μ L of 0.4% trypan blue were mixed; 10 µL were placed in a Neubauer chamber for observation at 40x. As shown in Table 1, the percentage of intact erythrocyte cells decreased by 41% when they were exposed at 1.3 mg of T. vulgaris. At a T. vulgaris concentration of 3.4 mg, the percentage of intact erythrocyte cells decreased by 62%. At concentrations of 6.5, 9.1 and 13 mg of T. vulgaris, the erythrocyte cells were completely lysed, as it happened with C. albicans cells. It is important to note that in these tests high concentrations of T. vulgaris were used, compared to the number of cells tested for yeasts and erythrocytes, that is, the cells were subjected to high doses of the essential oil in a short period of time. Apparently, the eukaryotic cells tested in these assays showed greater resistance to the essential oil of T. vulgaris compared to uropathogenic E. coli, which was highly sensitive.

DISCUSSION

The plant extracts contain substances with antimicrobial activity, such is the case of essential oils widely used in the world since ancient times for different purposes (Sendra *et al.*, 2016). At present, the essential oils has been used greatly increased in the food, cosmetic and pharmaceutical industry (Elshafie and Camele, 2017). It has been reported that essential oil of *T. vulgaris* is a potent bactericide against *Staphylococcus aureus, Salmonella typhimurium, Escherichia coli*, including some fungi like *Cryptococcusneoformans, Aspergillus* sp. (Inayatullah *et al.*, 2017; Johny *et al.*, 2010). In the present work, the antibacterial activity of *T. vulgaris* essential oil was tested using uropathogenic *E. coli* strain as described in materials and methods. The results obtained showed that *T. vulgaris* essential oil completely inhibited the growth of uropathogenic *E. coli* at all concentrations tested (Fig. 1).

In previous works, it was reported that *T. vulgaris* essential oil inhibited the growth of uropathogenic *E. coli* and also the biofilm formation (Al-Shuneigat *et al.*, 2014; Flores-Encarnación *et al.*, 2018; Hussein *et al.*, 2014). As shown in Fig. 1, the surface of trypticase soy agar plate was bright and free of bacterial growth. The observed effect of *T. vulgaris* in uropathogenic *E. coli* was bactericide, not bacteriostatic (data not shown). As reported by some authors, the bacterial growth inhibitory effect observed with *T. vulgaris* is attributed to thymol and carvacrol, two important chemical components in the essential oil of *T. vulgaris* (Khan*et al.*, 2017). In addition to *T. vulgaris*, carvacrol is present in essential oils of *Origanum vulgare*, *Trachyspermum ammi*, *Lepidium africanum*, *Citrus*

bergamia (Dandlen et al., 2011). Thymol and carvacrol are hydrophobic monoterpenes that penetrate the cell membranes of bacteria, leading to disruption of cell membrane integrity; it results in dissolution of the proton motive force and subsequent reduction in ATP synthesis (reduction in other energy-dependent cell processes including synthesis of enzymes and toxins). As well as a release of bacterial cell content (Nostro and Papalia, 2012). It has been reported that the antibacterial action of carvacrol is stronger against Grampositive as Bacillus cereus, Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, than Gram-negative bacteria as E. coli O157:H7, Pseudomonas fluorescens, Salmonella typhimurium, Vibrio cholerae, V. vulnificus (Langeveld et al., 2014; Magi et al., 2015). In this work, once the effect of T. vulgaris in uropathogenic E. coli was known, other tests were performed to determine the effect of essential oil on eukaryotic cells using yeasts (S. cerevisiae and C. albicans) and erythrocytes as biological models. The results obtained showed that T. vulgaris produced inhibition of growth in both yeasts, however the inhibition was not as strong as observed with the growth of E. coli (Fig. 1). The T. vulgaris essential oil had a different effect in growth of S. cerevisiae and C. albicans. T. vulgaris showed greater antifungal activity in C. albicans. It has been reported that the essential oils of plants show also activity against a wide range of microorganisms including both yeast and filamentous fungi (Helal et al., 2006). For example: the essential oil of Cymbopogon citratus inhibited the growth of Neurospora sitophila, Penicillium digitatum, Aspergillus parasiticus and A. flavus (Mishra and Dubey, 1994). It has been reported that both thymol and the essential oil of T. vulgaris exhibited strong fungistatic and fungicidal activities against Aspergillus, Penicillium, Cladosporium, Trichoderma, Mucor and Rhizopus and that the inhibition effect of thymol was three times greater than the essential oil of T. vulgaris (Klaric et al., 2007). Bachir raho et al., (2018) reported that 100 ppm of T. vulgaris oil did not show any antifungal activity against S. cerevisiae.

Other studies have shown the antifungal activity of essential oils of various chemotypes of T. vulgaris against C. albicans (Giordani et al., 2004). This data are related to the results obtained in the present study, where it was observed that T. vulgaris mostly inhibited the C. albicans growth. It was suggested that the C. albicans cell membrane may be more susceptible to the action of *T. vulgaris* by cell wall/membrane damage, disrupt the permeability of cell membranes and possibly inhibit respiration (Giordani et al., 2004; Thakre et al., 2017). Cox et al., (2000) suggested that the variations in the rate of monoterpene penetration through the fungal cell wall and cell membrane may explain the differences in the efficacy of the monoterpenes on the yeasts. The above could explain the differences observed in the growth of S. cerevisiae and C. albicans when by T. vulgaris were treated. As is known, candidiasis is one of the most common fungal infections in humans caused by the Candida species, most notably C. albicans (Deorukhkar and Roushani, 2018). In this case, the essential oil of T. vulgaris could be proposed for the treatment of infections by C. albicans (at least in the treatment of superficial mycoses). In the present study, the amphotericin B it had no effect on the growth of S. cerevisiae at the concentrations tested. The inhibition halos formation of growth was not observed, which indicated a resistance to the antifungal used (Fig. 1). The C. albicans strain was more sensitive to the presence of the antifungal tested compared to S. cerevisiae.

However, in both cases at these concentrations of amphotericin B (up to 2.5 μ g) it was not possible to observe the effect recorded with T. vulgaris. In recent years, iIt has been observed that the incidence of invasive infections and resistance to antifungal therapy continue increasing (Deorukhkar and Roushani, 2018). Resistance to antifungal drugs has become a very serious problem, especially in immunocompromised individuals, because it is associated with increased incidences of opportunistic infections and systemic fungal infections (Deorukhkar et al., 2014). Therefore, it is necessary to search for new substances or drugs with antifungal activity and the use of essential oils could be an option. To determine the effectiveness of the essential oil of T. vulgaris in a short time, the cell viability assay was performed using S. cerevisiae, C. albicans and an erythrocyte suspension. As shown in Table 1, the percentage of viable S. cerevisiae cells decreased by 28% when they were exposed at 1.3 mg of T. vulgaris for 10 min. At a T. vulgaris concentration of 6.5 mg, the viability of S. cerevisiae cells was 30%. At concentrations of 9.1 and 13 mg of T. vulgaris, the S. cerevisiae cells were completely lysed.

In the case of C. albicans cells, a greater decrease in viability was observed, when the yeast was subjected to the action of T. vulgaris. As shown in Table 1, the percentage of S. cerevisiae, C. albicans and erythrocyte viable cells decreased at 82, 76 and 59%, respectively, when they were exposed at 1.3 mg of T. vulgaris. At a T. vulgaris concentration of 3.4 mg, the viability of S. cerevisiae, C. albicans and erythrocyte cells decreased at 55, 44 and 38%, respectively. The most affected cells were erythrocytes followed by C. albicans. Rojas-Armas et al., (2019) evaluated the acute and repeated 28-day oral dose toxicity of T. vulgaris essential oil in rats, and they reported that the essential oil has moderate oral toxicity. The hematological and biochemical parameters were not altered. In the present study, the erythrocytes were challenged directly to the essential oil and it was observed that 38% of them remained intact up to 3.4 mg of T. vulgaris, which suggested that the essential oil have moderate toxicity to erythrocyte cells. Using higher concentrations of T. vulgaris essential oil, all cells were completely lysed. In all previous tests, the cells were subjected to high doses of the essential oil in a short period of time, which would indicate that the eukaryotic cells tested showed greater resistance to the essential oil of T. vulgaris compared to uropathogenic E. coli (highly sensitive).

Conclusion

The essential oil of *T. vulgaris* has been used for many years for different purposes. As a potent bactericide, *T. vulgaris* acts on both Gram positive and negative bacteria. Apparently, bacteria do not develop resistance to essential oils due to their rapid action. In this study, it was shown that essential oil of *T. vulgaris* inhibited the growth of yeasts such as *S. cereviceae* and *C. albicans*. However, higher concentrations of the essential oil were required to cause damage to yeast cells in a short time. Something similar happened with erythrocyte cells. The essential oil of *T. vulgaris* had a moderate toxicity to yeast and erythrocyte cells.

Acknowledgement

Thank to Becerril-Ramírez M. from Biomedicina-BUAP, for the valuable technical collaboration for the development of this work. At Facultad de Medicina-BUAP and PRODEP for the facilities provied for the development of this work.

REFERENCES

- Al-Shuneigat J., Al-Sarayreh S., Al-Saraireh Y., Al-Qudah M., Al-Tarawneh I. 2014. Effects of wild *Thymus vulgaris* essential oil on clinical isolates biofilm-forming bacteria. J. Dental Med. Sci. 13:62-66.
- Bachir raho G., Bevilacqua A., Corbo M.R., Sinigaglia M. and Pignatiello S. 2018. Antifungal properties of some essential oils against *Saccharomyces cerevisiae*. Curr. Tr. Biotech. Microbio. 1:1-5.
- Boskovica M., Zdravkovica N., Ivanovica J., Janjica J., Djordjevica J., Starcevica M., Baltica M.Z. 2015. Antimicrobial activity of thyme (*Thymus vulgaris*) and oregano (*Origanum vulgare*) essential oils against some food-borne microorganisms. Procedia Food Sci. 5:18-21.
- Castillo Y., Sierra A., Martínez A. and Plenge F. 2009. Efecto del diazinón sobre el cultivo de linfocitos de sangre periférica de humano. Tecnociencia Chihuahua. 3:97-106.
- Cox S.D., Mann C.M., Markham J.L., Bell H.C., Gustafson J.E., Warmington J.R. and Wyllie S.G. 2000. The mode of antimicrobial action of the essential oil of Malaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 88:170-175.
- Daferera D.J., Ziogas B.N. and Polissiou M.G. 2003. The effectiveness of plant essential oils in the growth of *Botrytis cinerea*, *Fusarium* sp. and *Clavibacter michiganensis* subsp. *michiganensis*. Crop Protect. 22:39-44.
- Dandlen S.A., Lima A.S., Mendes M.D., Miguel M.G, Faleiro M.L., Sousa M.J., Pedro L.G., Barroso J.G. and Figueiredo A.C. 2011. Antimicrobial activity, cytotoxicity and intracellular growth inhibition of Portuguese Thymus essential oils. Braz. J. Pharm. 21:1012-1024.
- Deorukhkar S., Saini S. and Mathew S. 2014. Non-albicans Candida Infection: an emerging threat. Interdiscip. Perspect. Infect. Dis. 2014:1-5.
- Deorukhkar S.C. and Roushani S. 2018. Identification of *Candida* species: conventional methods in the era of molecular diagnosis. Ann. Microbiol. Immunol. 1:1-6.
- Elshafie H.S. and Camele I. 2017. An overview of the biological effects of some mediterranean essential oils on human health. BioMed Res. Int. 2017:1-14.
- Flores-Encarnación M., Nava-Nolazco R.M., Aguilar-Gutiérrez G.R., Carreño-López R. and García-García S.C. 2018. The effect of *Thymus vulgaris* on growth and biofilm formation of uropathogenic *Escherichia coli*. Afr. J. Microbiol. Res. 12: 237-242.
- Flores-Encarnación M., Nava-Nolazco R.M., Carreño-López R., Aguilar-Gutiérrez G.R., García-García S.C., Cabrera-Maldonado C. 2016. The antibacterial effect of plant-based essential oils. Intern. J. Res. Stud. Biosci. 4:1-6.
- Giordani R., Regli P., Kaloustian J., Mikaïl C., Abou L. and Portugal H. 2004. Antifungal effect of various essential oils against *Candida albicans*. Potentiation of antifungal action of amphotericin B by essential oil from *Thymus vulgaris*. Phytother. Res 18: 990-995.
- Helal G.A., Sarhan M.M., Shahla A.N.K.A. and El-Khair E.K.A. 2006. Antimicrobial activity of some essential oils against microorganisms deteriorating fruit juices. Mycobiol. 34:219-229.
- Hussein N.H., Rasool K.H. and Hussein J.D. 2014. Effects of Coriandrum sativum, Thymus vulgaris, Borago officinalis

and *Pimpinella anisum* on biofilm *Escherichia coli*. J. Gen. Environ. Res. Conserv. 2:219-230.

- Inayatullah S., Shafee M., Shafiq M., Asif M., Parveen S., Kakar K., Khan Y.H., Amir M., Qadir A., Yakoob M. and Baloch A. 2017. Antimicrobial activity of thyme (*Thymus* vulgaris) essential oil cultivated in Quetta, Balochistan, Pakistan. Int. J. Biosc. 10:105-110.
- Johny A.K., Darre M.J., Donoghue A.M., Donoghue D.J. and Venkitanarayanan K. 2010. Antibacterial effect of transcinnamaldehyde, eugenol, carvacrol, and thymol on *Salmonella enteritidis* and *Campylobacter jejuni* in chicken cecal contents *in vitro*. J. Appl. Poult. Res. 19:237-244.
- Khan I., Bahuguna A., Kumar p., Bajpai V.K. and Kang S.C. 2017. Antimicrobial potential of carvacrol against uropathogenic *Escherichia coli* via membrane disruption, depolarization, and reactive oxygen species generation. Front Microbiol. 8:2421-2430.
- Klaric M.S., Kosalec I., Mastelic J., Pieckova E., Pepeljnak S. 2007. Antifungal activity of thyme (*Thymus vulgaris* L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 44:36-42.
- Kon K. and Rai M. 2012. Antibacterial activity of *Thymus* vulgaris essential oil alone and in combination with other essential oils. Nusantara Biosci. 4:50-56.
- Langeveld W.T., Veldhuizen E.J.A. and Burt S.A. 2014. Synergy between essential oil components and antibiotics: a review. Crit. Rev. Microbiol. 40:76-94.
- Magi G., Marini E. and Facinelli B. 2015. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycinresistant group a streptococci. Front. Microbiol. 3:165-172.
- Marston H.D., Dixon D.M., Knisely J.M., Palmore T.N. and Fauci A.S. 2016. Antimicrobial resistance. JAMA. 316:1193-1204.

- Mishra A.K. and Dubey N.K. 1994. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl. Environ. Microbiol. 60:1101-1105.
- Mohsenipour Z. and Hassanshahian M. 2015. The inhibitory effect of *Thymus vulgaris* extracts on the planktonic form and biofilm structures of six human pathogenic bacteria. Avicenna J. Phytomed. 5:309-318.
- Moya-Salazar J. and Rojas R. 2018. Comparative study for identification of *Candida albicans* with germ tube test in human serum and plasma. Clin. Microbiol. Infect. Dis. 3:1-4.
- Nostro A. and Papalia T. 2012. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat. Antiinfect. Drug Discov. 7:28-35.
- Prabuseenivasan S., Jayakumar M. and Ignacimuthu S. 2006. *In vitro* antibacterial activity of some plant essential oils. BMC Compl. Altern. Med. 6:39-47.
- Rojas-Armas J., Arroyo-Acevedo J., Ortiz-Sánchez M., Palomino-Pacheco M., Castro-Luna A., Ramos-Cevallos N., Justil-Guerrero H., Hilario-Vargas J. and Herrera-Calderón O. 2019. Acute and repeated 28-day oral dose toxicity studies of *Thymus vulgaris* L. essential oil in rats. Toxicol. Res. 35:225-232.
- Saranra P. and Devi V.D. 2017. Essential oils and its antibacterial properties- a review. Life Sci. Arch. 3:994-1011.
- Sendra E. 2016. Essential oils in foods: from ancient times to the 21st century. Foods. 5:1-3.
- Thakre A., Zore G., Kodgire S., Kazi R., Mulange S., Patil R., Shelar A., Santhakumari B., Kulkarni M. and Kharat K. 2017. Limonene inhibits *Candida albicans* growth by inducing apoptosis. Med. Mycol. 0:1-14.
