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INTRODUCTION

A ring R is called semiprime ifxRx = (0) implies = 0, such that x € R (3) . Let R be a ring then R is called 2-torsion free i f2x
= 0 implies x = 0, for all x € R (3) . Zalar (5) present the concepts o fcentralizer and Jordan centralizer o fa ring R as follows:
A left (resp. right) centralizer ofa ring R is an additive mappingt: R —— R which satisfies the following equation t (xy) = t(x)
y (resp.t (xy)=xt(y)), Prall x,y € R . tis called a centralizer of R ifit is both a leff and a right centralizer. A lef (resp.
right) Jordan centralizer ofa ring R is an additive mapping t: R —— R which satisfies the ©llowing equation t (x2) =t(x)x
(resp. t (xz) =x t(x) ), forallx € R . tis called a Jordan centralizerof R ifit is both a left and a right Jordan centralizer .
Jarullah and Salih (4) introduced the concepts of a generalized higher reverse leff (resp. right) centralizer and a Jordan
generalized higherreverse left (resp. right) centralizer on rings as follows:

Let T =(T;);cn be a family o fadditive mappings of a ring R into itself . Then T is called a generalized higher reverse left
(resp. right) centralizer associated with the higher reverse leff (resp. right) centralizer t = (t,);oy of R ifforall x, y € Rand n €
N

T,(xy) =3 Tyt (x)

i=1

mwnngiuwwnuﬂ

Let T = (T;);cn be a family ofadditive mappings ofa ring R into itself. Then T is called a Jordan g eneralized higher reverse
left (resp. right) centralizer associated with the Jordan higher reverse lefi (resp. right) centralizer t = (t;);cy of R , ifthe
following equation holds , forall x € Rand n € N:
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Tn(xz) = Zn Ti(x)ti.l(x)(mSp' Tn(xz) = Zn: t,(x) T;(x) )-

In this paper , we define and study the concept of orthogonal generalized higherreverse lef  (resp.right)  centralizers of
semiprime rings and we prove some oflemmas and theorems about orthogonally one ofthese Theorems is: Let R be a 2-

torsion free semiprime ring ,T=(T;);cn and H=(H;);cnbe two generalized higher reverse leff (resp.right) centralizers of R ,
Suppose that "Ian = H2n ,foralln € N. ThenT,+ H, and T, — H,, are orthogonal . Inour work we need the following Lemmas :

Lemma (1.1): (2)

Let R be a 2-torsion free semiprime ring and x, y be elements of R, thenthe following conditions are equivalent : (i) xry =0,
forall r € R (ii) yrx =0, for all r € R (iii) xry + yrx= 0, for all r € R Ifone ofthese conditions is fulfilled ,then xy =yx =0 .

Lemma (1.2): (1)
Let R be a 2-torsion free semiprime ring and x , y be elements ofR ifxry + yrx= 0, for all r € R ,then xry = yrx=0.
Orthogonal Generalized Higher Reverse Left (resp. Right) Centrali zrs on

Semiprime Rings: In this section we will introduce and study the concept of orthogonal generalized higher reverse left
(resp.right) centralizers on semiprime rings.

Definition (2.1):

Two generalized higherreverse left (resp.right) centralizers T=(T;); oy and H=(H;);. ofa ring R are called orthogonal if T,(x)
n

R H,(y)= (0)=H,(y)RT,(x), forall x, y € Rand n € N. Where T,(x) R H,(y)= Z Tix)z H(y), forall z € R
i=1

Lemma (2.2):

Let R be a semiprime ring , suppose that T=(T;);cy and H=(H;);.n be two generalized higher reverse left (resp.right) centralizers
ofR , satisy T, (x) R H,(x)=(0), forall x € Rand n eN. ThenT,(x) R H,(y)= (0), forall x,y e R andn eN.

Proof:

n
Suppose that T,(x) R H,(x)=(0), for all x € Rand n eN Thatis T (x) R Hn(X)ZZ T,x)zHj(x)=0,forallx,z € R...(1)

i=l1

n n
Replace x by x +y in (1), we have that Z Ti(x+y)zHj(x+y)=0 Z Ti(x) z Hi(x) + T;(x) z Hy(y) + Ti(y) z Hj(x) +

i=1 i=l1

Ti(y) z Hj(y) = 0 Therefore , by our assumption and Lemma (1.1), we get

n
Z T,x)zHj(x)=0, forallx,y,z e R
i=1

Thus, T,(x) R H,(y)= (0), forall x,y € R andn eN.
Lemma (2.3):

Let R be a 2-torsion free semiprime ring, T=(T;); oy and H=(H;);oy be two generalized higher  reverse lef  (resp.right)
centralizers ofR . Then T, and H,, are orthogonal ifand only if T,,(x) H,(y) + H,(X) To(y)= 0, forall x,y e Rand n € N.

Proof: Suppose that T, and H,, are orthogonal T.P. T,(x) H,(y)+ H,(x) T,(y)=0, forall x, y € Rand n € NSince T, and H,
n n

are orthogonal , we have that Z Ti(x)z Hi(y)=0= Z H; (y)zT; (x), forall x, y,z € R TherePore , by Lemma (1.1) ,

i=1 i=1

we get the require result . .

Conversely, , it's clear by using Lemma (1.2)
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Theorem (2.4): Let R be a 2-torsion free semiprime ring , T=(T};),cy and H=(H;); .y are orthogonal generalized higher reverse
left (resp.right) centralizers associated with the higher reverse leff (resp.right) centralizers t=(t;);cn and h=(h;);cn resp. of R,
where T, and H, are commuting .Then the following relations are holds , for all x, y eR and neN: (i) T,(x) H,(y) = H,(x)

Tu(y)= 0 Hence T ,(x) Hy(y) + Hy(x) T,,(y)= 0 (ii) t, , H, are orthogonal and t,(x) Hy(y) = Hy(x) t,(y)=0 (ii))  h, T, ar
orthogonal and h,(x) T,(y)= T,(x) h,(y)= 0 (iv) t,, h, are orthogonal higher reverse left (resp.right) centralizers

Proof:

n n
(i) Suppose that T, and H, are orthogonal Z T:x)z Hi(y)=0= Z Hi(y)z Ti(x), forall x, y,z € RBy Lemma (1.1) ,
i=1 i=1

n n n
we have that Z T:x)H(y)= Z H(x)T{(y)=0, forall x,y € R Then, we get Z T;(x) Hy(y) + H;(x) Ti(y)= 0, for
i=1 i=1 i=1

allx, ye RHenceT  (x) H,(y)+ H,(X) T,(y)=0, forall x, y e Rand n € N (ii) Suppose that T, and H,, are orthogonal

n n
By (i) , we have that Z T,x)Hi(y)= 0, forall x, y € R Replace x by zx and since H, is a commuting , we have that Z
i=l i=1

n
H(y)Ti(zx)=0 Z H;(y) T;(x)t;; (27 = 0 By Lemma (1.1), we have that
i=l

le Hi(y)ti.1(2=0

Right multiply by t; (x), we have that
n n

Z H®t.i@t(x)=0, Porall x, y,z € R... (1) Since H, is a commuting , we have that Z ti(x) ti1 () Hi(y) = 0, for all
i=l i=1

n
X,Y¥,z€R..(2)By (1)and (2), we get t, and H, are orthogonal . From (2), we have that Z ti(x) tiy (2) Hi(y)= 0, for all x
i=1
,¥,z€ R By Lemma (1.1), we have that
n n
Z t;(x) Hi(y) = Z Hx)ti(y)=0, forall x, y € R Thus, t,(x) H,(y)= H,(x) t,(y)=0, forall x,y e Randn e N.
i=1 i=l1
(iii) By the same method as (ii). (iv) Since that T, andH,, are orthogonal By (ii), we have that t,(x) H,(y)=0, forall x, y €
n n n

R,andn e N z t;(x) H;(y) = 0 Replace y by yz , we have that Z t;(x) o Hi(y2) =0 Z t;(x) H;(2) h;_;(y)= 0 Replace
i=l i=1 i=1

n

h; 1 (y) by hi(y), we have that Z t;(x) Hi(z) hj(y)= 0 By Lemma (1.1), we get the require result .
i=1

Theorem (2.5)

Let R be a 2-torsion free semiprime ring , T=(T;);cy and H=(H,); oy are orthogonal generalized higher reverse leff (resp.right)
centralizers associated with the higher reverse leff (resp.right) centralizers t=(t;);cy and h=(h;);c resp. of R . Then the following
relations are hold , for all neN : (i) t,H, = H,t, = 0 (ii) h, T, = T,h, =0 (iii) T,H,= H,T, =0

Proof : (i) Sincethat T, andH,, are orthogonal By Theorem (2.4)(ii) , we have that t,(x) H,(y)=0, forall x,y € Randn € N

n

Z ti(x) Hi(y)=0, forall x ,y € R Z t; (t(x) Hi(y)) =0 z ti(Hi(y)) ti ((x)) = 0 Right multiply by t(H(y)) , we
i=1 i=1

i=1
N n
have that Z t;(Hi(y)) tiy (t(x)) ti(H;(y))= 0, for all x , y € R SinceR is asemiprime ring , we have that Z t;(Hi(y)) = 0,
i=1 i=1
Prallye R=t,H,=0,foralln € N... (1) Also, by Theorem (2.4)(ii) , we have that
H,.xX)t,(y)=0,frallx,yeRandne N
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Zn: Hi(x)ti(y)=0 Z Hi(H () ti(y) =0 Z Hi(ti(y)) hi; (Hi(x)) = 0 Rightmultiply by Hi(ti(y)) , we have that

i=1 i=1 i=1
Zn: H;(t(y)) hi.; (H;(x)) Hj(t;(y)) = 0 SinceR is asemiprime ring , we have that Zn: Hi(t(y) =0, forallye R=H, t,=0,
i=1 i=1
foralln e N... (2) From (1)and (2), wegett, H,=H, t,= 0, for all n € N. (ii) By the same method as (i)n
(iii) Sincethat T,, and H, are orthogonal By Theorem (2.4)(i) , we have that T, (x) H,(y)=0,forallx,y e Randne N Z

i=1

T H(y)=0) T(T()HE)=0> TiH(y) tis (T;(x) =0 Rightmultiply by T;(H(y)) , we have that >
i=1 i=1 i=1
T;(Hi(y)) ti.; (T;(x)) T;(Hi(y)) = 0Since R is a semiprime ring , we have that Z T;(Hi(y))=0 ,forallye R =T, H, =0, for

i=1

alln € N... (1) Also, By Theorem (2.4)(i) , we have that

H,x)T,(y)=0, Prall x, ye Randn e N
> HET®=0Y HHET)=0

z": H(Ti(y)) hy(Hi(x)) =0  Rightmultiply by H,(Ti(y)) , we have that

Z H;(T;(y)) hi;(H;(x)) Hi(T;(y)) = 0SinceR is a semiprime ring , we have that z Hi(Ti(y)) =0, forallye R=H, T,

i=1 i=1

=0, ralln e N ... (2) From (1)and (2), we get T,H,= H,T,=0, forall n € N.
Theorem (2.6):

Let R be a 2-torsion free semiprime ring , T=(T;);cy and H=(H;),\ be two generalized higher  reverse  lefft  (resp.right)
centralizers associated with the higher reverse leff (resp.right) centralizers t=(t;);cn and h=(h;);cy resp. ofR , where T, and H,
are commuting . Then T, and H, are orthogonal ifand only ifthe following relations are holds , for all x,y € Rand neN : (i)

T, (x) Hy(y) + Hy(x) T (y) = 0 (i) t,(x) Hy(y) = hy(x) T (y) =0
Proof:

Suppose that T, and H,, are orthogonal T.P. (i) T,,(x) H,(y)+ H,(X) T,(y)=0

(i) t,(x) Hy(y) = h,(x) T,(y)=0, forall x, y € Rand neN

Since T,, and H, are orthogonal

By Lemma (2.3), we get (i).

Now, Since T, and H, are orthogonal
By Theorem (2.4)(i) , we have that
Ta(x)Hy(y)=0

Replace H;(y) by x , we have that

Zn T,x)x=0

n

Y 6 (Ti(0)x) =0

i=1

3 )t Tix) =0

i=1
Left multiply by Hi(y) and since H, is a commuting, we have that
> GO Hy) i Ti(x) =0

i=1

in‘ ght multiply by t;(x) H;(y), we have that
> 6 Hi(y) tia (Ti(x) ti(x) Hi(y) = 0

i=1
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Since R isa semiprime ring, we have that Zn: t;(x) Hi(y)= 0 = t,(x) H,(y) =0, forall x, ye Rand n eN...(1)

i=1

Also, by Theorem (2.4)(i) , we have that H,(x) T,(y)=0, forall x,y e Randn eN

Z": H;(x) T;(y) =0 Replace T(y) by x , we have that

i=1

z Hx)x=0

> b H©x)=0
i=1

> h®)hHE)=0

i=1

Left multiply by T;(y) and since T, is a commuting, we have that

Zn: h; ) Ti(y) hi; (Hi(x)) = 0

Right multiply by h (x)T;(y), we have that

Z h; X)T;(y) h;; (H;(x)) h; X)T;(y) = 0 Since R isa semiprime ring, we have that

i=1
z h; X)T;(y)=0 = h, X)T,(y)=0, Prall x,y e Rand n eN ...(2)
i1

From (1) and (2), we get (ii) .

Conversely, Suppose that the relations are hold , forall x,y € R andneN:

(@) Ty(x) Hy(y) + Hy(0) To(y) = 0

(ii) t,(x) Hy(y) = h,(x) T,(y)= 0 T.P. T, andH,, are orthogonal From (i), we have that T, (x) H,(y)+ H,(x) T,(y)= 0, for all x,

y € Rand n € N By Lemma (2.3), we get the require result.

Theorem (2.7): Let R be a 2-torsion free semiprime ring , T=(T};),cy and H=(H;);c be two generalized higher reverse left

(resp.right) centralizers associated with the higher reverse leff (resp.right) centralizers t=(t;);cny and h=(h;);cy resp. of R , where

T, and H,, are commuting . Then T, and H,, are orthogonal i fand only i fT ,(x) H,(y)= t,(x) H,(y)= 0, for allx , y € R and

neN

Proof: Suppose thatT, and H, are orthogonal T.P. T,(x) H,(y)= t,(x) H,(y)= 0, forall x, y e R andn € N Since T, and H,
n

are orthogonal By Theorem (2.4)(i) , we have that T,(x) H,(y)= 0, forall x, y € Rand neN...(1) Z T;x)Hi(y)=0, forall
) ) i=l1
X, ¥y € RReplace H;j(y) by x, we have that Z t; (Ti(x)x) =0 Z t; (x) t.1(T;(x)) = 0 Left multiply by Hi(y) and since H,, is
) i=1 i=1
a commuting , we have that Zl t;(x) Hi(y) t;1(Ti(x)) = 0 Right multiply by t;(x) H;(y), we have that
i=

n
21: t;(x) Hi(y) ti.1(Ti(x)) ti(x) Hi(y) = 0
1=
SinceR isa semiprime ring, we have that
n
Z t(x)Hi(y)= 0= t,(x) Hy(y)=0,forall x,y e Randn eN ...(2)
i=1

From (1) and (2), we get the require result .
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Conversely , Supposethat T ,(x) H,(y) =t,(x) H,(y)=0, Prall x, y € R and neN T.P. T,, andH,, are orthogonal By
n n

assumption , we have that T,(x) H,(y)= 0 Z T;(x) H;(y) = 0 Replace x by zx, we have that Z Ti(z=) Hi(y)=0 Z

i=1 i=1 1=1

n
T,X)tiy(2) Hi(y)=0, forall x, y,z € R ...(3) Since T, and H, are commuting , we have that Z H(y)ti. (2 T;(x)=0, for

i=1

allx, y,z € R...(4) From (3)and (4), we have that T, (x) R H,(y)= (0)=H,(y)RT,(x), forall x, y,ze Randne N
Hence T, and H, are orthogonal .

Theorem (2.8)

Let R be a 2-torsion free semiprime ring , T=(T;);cy and H=(H;); .y be two generalized higher reverse left
(resp.right)centralizers associated with the higher reverse lefi(resp.right) centralizers t=(t;);cy and h=(h;);cn resp. ofR , where
T, and H, are commuting . Then T, and H,, are orthogonal ifand only if T ,(x) H,(y)=0,and t, H,=t, h, =0, fr allx,y € R
andne N.

Proof:

Suppose that T, and H, are orthogonal T.P. T,(x)H,(y)=0and t, H, =t, h,=0, forall x,y € Rand neN Since T, and H,
are orthogonal By Theorem (2.4)(i) , we have that T, (x) Hy(y)= 0, forall x,y € R and neN...(1) By Theorem (2.5)(i)n, we
havethat t, H, =0, for all n eN ...(2) By Theorem (2.4)(iii) , we have that T,(x) h,(y)= 0, forall x,y € R andn € N z

i=1

t; (Ti(x)hy(y)) =0, Prall x,y eR Zn: ti (hi(y)) tis (Ti(x)) = 0 Right multiply by t;(hi(y)) , we have that Zn: i (h(y) t
i=1 i=1

1(T;(x)) t; (h(y)) = 0 SinceR is asemiprime ring , we have that Zn: ti(hy(y)) =0, forally e R=1t,h,=0, oralln eN ...(3)
i=1

i=

From (1), (2) and (3) , we get the required result . Conversely , Suppose that T, (x) Hy(y) = 0 and t,H, =t;h, =0, for all x , y
€ Randn e N. T.P. T, andH,, are orthogonal By assumption , we have that T,(x) H,(y)= 0 Z T;(x) Hy(y)= 0 Replace x

i=1

by zx , we have that Z Ti(z) Hi(y)= 0 Z Tt (2 H(y)= 0, forall x,y,zeR ...(4) Since T, and H, are
i=1 i=1

commuting , we have that Zn: H;(y)t;1(2 T;(x)=0, orall x, y,z € R...(5) From (4) and (5) , we get T, and H, are

i=1

orthogonal .

Theorem (2.9): Let R be a 2-torsion free semiprime ring ,T=(T;),cy and H=(H;);.ybe two generalized higher  reverse  left
(resp.right) centralizers ofR , Suppose that "Ian = H2n ,foralln € N. ThenT,+ H, and T,, — H, are orthogonal.

Proof:

( (Trrll + Hn) (Tn_ I_In) + (Tn_ Hn) (Tn + I_In) ) (X)

= Z T?i(%) — Ti(x) Hi(x) + Hi()Ti(x) - B (%) + T3(x) + Ti(0Hi(x) - Hi(x)Ti(x) ~ H3(x) = 0
i=1

Therefore 5 ( (Tn + Hn) (Tn _Hn)+ (Tn _Hn) (Tn + Hn) )(X) =0
By Lemma (2.3), we get the require result.
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