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ARTICLE INFO  ABSTRACT 
 

 
 
 

In this  paper we establish that every Fredholm operator F on  a Hi lbert space has  a decomposit ion 
F=F+ K , where k is a fin ite rank operator. It is  also shown that the product of two Fredholm 
operators can again  be Fredholm. 
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INTRODUCTION 
 
Let H & B be two seperable Hilbert spaces. 
 
Definition (1) 
 
An operator K: H → B is said to have finite rank i f Rank (K) с 
B is finite dimensional. 
 
Remark 
 
If K is a finite rank operator , then K is compact .In particul ar 

if either dim(H) <  or dim(B) <  then any bounded operato r 
K: H→ B is finite rank and hence compact. 
 
Definition (2) 
 

A bounded operator F : H →B is Fredholm dim Nul (F) <  

,dim co. Ker (F) < and Rank(F) is closed in B , the index o f 
F is the integer. 
 
Index (F) = dim Nul (F) –dim Co Ker (F) 
 =dim Nul(F)-dim Nul (F*) 
 
 
*Corresponding author: Dr. Abhik Singh, 
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Lemma (1) 
 
Let M Ϲ H be a closed subspace and V Ϲ H be a finite 
dimensional subspace .T hen M+V is closed as well .In 
particular ,if Co-dim (M)=dim(H/M)<∞ W Ϲ H is a subspace 
such that M Ϲ W ,then W in closed and Co-domain (W) <∞. 
Lemma (2) 
 
If K : H → B is a finite rank operator , then there exists {ϕn} k

n=1 
H and {ᴪn}כ 

k
n=1  כB such that 

 
(i) Kx = ∑ (�,�

��� ϕn)ᴪn for all x ε H 
(ii) Ky =∑ (�,�

��� ᴪn)ϕn for all y ε B 
 
In Particular K* is still finite rank. For the next (3) & (4) .Let  
us assume B=H  
 
(3) dim Nul (l +K) < ∞ , 
(4) dim Co Ker (l + K) < ∞ Rank (l + K) is closed and Rank (l 
+ K) = Nul (l + K*)1 
 

Theorem (1) 
 

 A bounded operator F: H→B is Fredholm i f and only  i f there 
exists a bounded operator L: B→H such that (LF-I) & (FL-I) 
are both finite rank operators.  

 

Proof 
 

Suppose F: H→B is Fredholm , then F:Nul(F)
┴
→Rank(F) is a 

bijective bounded linear map between Hilbert spaces.  
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Let F-1be the inverse of this map a bounded map by open 
mapping theorem. Let P:H→Rank (F) be orthogonal projection 
and set L=F

-1
P,Then (LF-I)=(F

-1
PF-I)=F

-1
F-I=-Q where Q is 

the orthogonal projection on to Nul (F).Similarly (FL-I)=(FF-

1
P-I)=-(I-P).  Because (I-P) and Q finite rank projections and 

hence are finite rank. Therefore (LF-I) & (FL-I) are both finite 
rank operato rs. Conversely we shall first show that the operator 
L: B → H may be modified so that (LF-l) & (FL-l) are both  

finite rank op erators. For this let G (LF-I) & choose a finite 
rank approximation G1to G such that G=G1+ ε where | | ε||  < 

1.Define L : B→H to be the operator L (1+ε)
-1

L .Since 
F=(1+ε )

-1
L.Since LF= (1+ε) + G1,L,F=(I +(1+ε)

-1
G1=I+K 

,where Kis a finite rank operator. Similarly there exists a 
bounded operator LR:B→H and a finite-rank op erator Mn such 
that FLR=I+MR. Note that LlFLR=LR+ MRLR and LlFLR=Ll+ 
LRMR .There for Ll-LR=LlMR -KlLR=S is a finite rank operator.  
Therefore FLl=F(LR+S)=I+MR+FS. So that there exists a 
bounded operator.  
 
L

-1
:B→H such that (L

-1
F-I) & ( FL

-1
-I) are both finite rank 

operator. We now assume that L is choosen such that (LF-
I)=G1,(FL-I)=G2are finite rank ,clearly Nul (F) Ϲ Nul  
(LF)=Nul(I+G1) 
 
Rank (F) =Rank (I+G2) 
 
The theorem follows from Lemma (1) & (2) 
 
Proposition (1) 
 
If F: H→B is Fredholm then F* is Fredholm and index(F)=-
index(F*) 
 
Proof 
 
Choose L: B→H such that both (LF-I) &(FL-I) are of finite 
rank. Then (F*L*-I) & (L*F*-I) are of finite ank which implies 
that F* is Fredholm. The assertion index (F)=-index (F*) 
follows directly from the definition (3). 
 
Proposition (2) 
 
Let F be a Fredholm operator & K be a finite rank operator 
from H → B  and T  be another Fredholm operator from B→X 
(where X is another Hilbert space) 
 
Then (i) F+K is Fredholm and index (F)=index(F+K) 
 
(ii)TF is Fredholm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proof (1) 
 
Given K : H→B, finite rank it is easily seen that F+K is still 
Fredholm .Indeed i f L:B→H is a bounded operator such that  
G1=(LF-1) & G2=(FL-1) are both finite rank then L(F+K)-
1=G2+KL are both finite rank. Hence F+K is Fredholm by 
Theorem(1).It is known that f(t)=index(F+ tk) is a continuous  
locally constant function of t ε R, and hence is constant .In  
particular, index(F+K)= f(t)=f(0)=index (F)  
 
Proof (ii) 
 
It is easily seen using theorem (1) that the product of two 
Fredholm operators is again Fredholm. 
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