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ARTICLE INFO ABSTRACT

Background: Nonlinear Principal Component Analysis (NLPCA) is one of the explanatory
dimension reduction techniques and presents numerical and graphical results for variable sets
including linear or nonlinear relationships.  In Nonlinear Principal Component Analysis, categorical
and ordinal variables, as well as numerical variables, can be included in the analysis. Linearity
assumption for observed variables is not required for Nonlinear Principal Component Analysis. In this
study, an artificial neural network approach for NLPCA is explained and applied. Methods: The
hypothyroid data with 19 variables from 422 patients were used in the application. In order to identify
the difference of NLPCA from PCA, the results obtained using Principal Component Analysis (PCA)
together with NLPCA were interpreted by presenting in tables and graphics. Results: The first two
principal components explained 95.65% of the total variance in the NLPCA, while they explained
90.08% of the total variance in the PCA. Conclusion: In the analysis conducted via reducing the
number of observations, it was observed that NLPCA has a high explanation rate compared to PCA,
regardless of the number of observations. This can be attributed to NLPCA's ability to identify
nonlinear relationships. Accordingly, it can be said that NLPCA gives effective results in the analysis
made with both numerical and categorical variables.
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INTRODUCTION

Univariate and multivariate methods for determining linear
relationships between variables require assumptions related to
the data set, such as continuity of variables and linearity of
relationships between variables. On the other hand,
relationships between variables may not always be linear. One
of the multivariate analysis methods based on the linear
relationship between variables is Principal Component
Analysis (11). In case the variables are continuous and the
relationships between them are linear, the effectiveness of the
Principal Component Analysis is high. However, in scientific
studies, besides continuous variables; categorical or discrete
variables may also be involved. In such cases, principal
component analysis is not used. One of the alternative solution
methods developed for datasets containing variables that are
not continuous and have no linear relationship between them is
the Nonlinear Principal Components Analysis (NLPCA) (12).
This method of analysis, with a linear or nonlinear relationship
between them, is a descriptive dimension reduction method
that provides numerical and visual results for datasets
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containing continuous, categorical or discrete variables (2). In
practice, the data are often multidimensional. For example, a
16 × 16 matrix is 256 in size. However, the original dataset
can be represented with fewer dimensions. In this case, the
dataset is reduced to a smaller size without much loss of
information. These dimensions are called components and are
defined by a curve in the original data field (17). In many
scientific studies, PCA is often used. However, given that PCA
is a linear method and the relationships between variables in
many fields, especially in engineering sciences, are not linear,
it can be stated that it will be more appropriate to use NLPCA
instead of PCA (3). NLPCA can be considered as a nonlinear
generalization of PCA. However, NLPCA is superior to PCA
since it has high explanatory power with few variables (14).

Artificial neural networks are computational systems
developed in order to realize the skills such as the ability to
derive, create and discover new information through learning,
which is one of the features of the human brain (9). Artificial
Neural Networks (ANN) is a flexible method that determines
the relationship between them without requiring any
assumption about the variable structure for the solution of
complex structure problems that cannot be solved manually.
ANN can be used especially for classification and dimension
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reduction purposes. The ANN calculates the weights of the
network step by step to assign the units to their classes with
the least error using the back propagation algorithm and
minimizing the network error (10). ANN performs machine
learning using examples, its programs and operation method
are not similar to known programming methods.

In order to the ANN to run reliably, it must first be trained and
its performance tested. ANN are functional tools used in areas
such as prediction, classification, pattern recognition, data-
based process modeling and nonlinear process control (16). In
this study, the NLPCA method for nonlinear dimension
reduction was investigated on the basis of ANN. In addition,
the results obtained by practicing in the field of health sciences
to show the effectiveness of NLPCA and to expand its
usability have been interpreted.

MATERIALS AND METHODS

Material: In the study, from the free-access data site as
application material (http://mlr.cs.umass.edu/ml/machine-
learningdatabases/thyroiddisease/hypothyroid.data Access
date: 10.09.2018) 19 variables hypothyroid data of 422
patients provided were used and the variables and their
features are given in Table 1.

Table 1.Variables in the study and their properties

Variable name Category Type
Thyroxine treatment (1) Yes,   (0) No Nominal
Anti-thyroid treatment (1) Yes,   (0) No Nominal
A history of
Hypothyroidism

(1) Yes,   (0) No Nominal

Pregnancy (1) Yes,   (0) No Nominal
Tumor (1) Yes,   (0) No Nominal
Goiter (1) Yes,   (0) No Nominal
A history of thyroxine (1) Yes,   (0) No Nominal
Having thyroid surgery (1) Yes,   (0) No Nominal
A history of
Hyperthyroidism

(1) Yes,   (0) No Nominal

Comorbidity (1) Yes,   (0) No Nominal
Lithium (1) Yes, (0) No Nominal
Hypothyroidism (1) Yes,   (0) No Nominal
Gender (1) Male,..

(2) Female
Nominal

Age Continuous Continuous
TSH Continuous Continuous
TT4 Continuous Continuous
FTI Continuous Continuous
T3 Continuous Continuous
T4U Continuous Continuous

Method: Linear Principal Component Analysis is a widely
used method, however, this method requires the variables to be
continuously variable and the relationships between them to be
linear. If the relationship between variables is not linear, linear
PCA is generalized and NLPCA has been developed to detect
nonlinear relationships. NLPCA is a nonlinear extension of
PCA.

In applications, the data can be expressed as x(t) = (x1,..., xi).
Here each variable xi contains (i = 1, ..., l) n observations.
PCA tries to find u as a linear combination of xi and a vector
associated with a. This relationship can be written as follows.

u(t)= a.x(t) (1)

Thus;

<‖x(t)-a.u(t)‖2> is minimized (2)

In Equation (2), u is called the first fundamental component.
The first eigenvector of the covariance matrix (also called the
Empirical Orthogonal function (EOF)) a usually defines a
spatial model. The error is also received with the second basic
component from x-au and continues for the number of these
components. In practice, principal components are obtained
simultaneously (7).

The main difference between NLPCA and PCA; NLPCA
allows a nonlinear mapping from x to u, while PCA only
allows a linear mapping. It contains 3 hidden layers of
variables between the input and output layers of the neural
network variables in Figure 1 (or "neuron") to realize NLPCA.
Defined as the transfer function, f1 maps from the input
column vector x of length l, to the column vector of length m,
which is denoted by h(x), the first hidden layer. Accordingly,
hk

(x) is written as follow;

hk
(x)=f1((W

(x)x+b(x))k) (3)

w(x) in the equation (3) is the weight matrix with the dimension
“m x 1” and b(x) is the m-dimension column vector with the
bias parameters (k = 1, ..., m). Similarly, a second transfer
function, f2, maps from the encoder layer to the hidden layer
showing the nonlinear basic component, and for this nonlinear
basic component u is written as follow;

u= f2(w
(x) .h(x)+ (x)) (4)

While f2 is usually taken as a linear function, the
transformation function f1 is nonlinear (although its function is
not certain, it can usually be a hyperbolic tangent or sigmoid
function). Next, a transformation function f3 maps from u to
the last hidden layer, h(u). Thus hk

(u) is written as follow (k =
1,…, m);

hk
(u)=f3((w

(u)u+b(u))k) (5)

This function is followed by equation (6).

= f4((W
(u)h(u)+ (u))i) (6)

Here the error function j = <‖x-‖2> W(x), b(x), w(x), (x), w(u), b(u),
W(u) and (u) is minimized by finding optimal values (6). The
mean squared error between the original data x and the neural
network output   is thus minimized.

The total number of free (weight and bias) parameters used by
NLPCA is (m+f+1)(M1+M2)+m+f. The number of hidden
neurons in both the coding and decoding layers and the choice
of M follows a general rule. A larger M enhances the
network's nonlinear modeling ability, however it can also lead
to overfitting. For a lower M, the accuracy may be low as the
network has limited representation capacity. The value of M
relates to the complexity of nonlinear functions that can be
produced by the network. If f4 is a linear function and M = 1,
equation (6) shows that all  is linearly related to a single
hidden neuron, thus there can only be a linear relationship
between variables. For nonlinear solutions, M must be greater
equal 2 (12).
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Figure 1. Neural network model for Nonlinear Principal
Components Analysis

In Figure 1, there are 3 hidden layers (indicated by a circle)
between the input layer x on the left side and the output layer
on the right side. Next to the input layer, there is the coding
layer, followed by "bottleneck" (with a single neuron u) and
analysis layers, respectively. The nonlinear function maps
from the high-dimensional input space to the low-dimensional
bottleneck space, followed by mapping back to the original
space shown as output from the bottleneck space. The outputs
here ensure that the error function with J = <‖x-‖2> is
minimized as close to the input variables as possible.
Compression or dimension reduction of data is provided by u,
the neuron in the bottleneck, and this is called the nonlinear
principal component (6).

Multi-layer Perceptron: Single-layer network (Perceptron),
one of the first models of artificial neural networks, was first
developed by Frank Rosenblatt. The main feature of single-
layer network models is the ability of these models to solve
linear problems. Nonlinear problems cannot be learned with
such networks. Multi-layer networks have been developed to
solve this problem. This model developed by Rumelhart et al.
is called error propagation model or back propagation model.
This model uses a learning method called Delta learning rule.
The structure of multi-layer networks is given in Figure 2.
Multi-layer networks are feed forward; it has three layers, the
input layer, the hidden layer and the output layer. The input
and output layers have the same number of neurons for the
signals.

Figure 2. Multi-layer Perceptron

No information is processed in the input layer. This layer
receives information from the external environment and sends
it to the intermediate layer. Each processing element in the
input layer is linked to the processing element in the next
hidden layer. The hidden layer processes the information from
the input layer and sends it to the output layer. Again, each
processing element in the hidden layer is linked to all
processing elements in the output layer. There can be more
than one hidden layer. The number of hidden layers and the
number of processor elements in hidden layers is found by trial

and error. The output layer processes the information from the
hidden layer and transmits the outputs to the outside world (4).
Single-layer networks have significant limitations. Minsky and
Papert (1969) have demonstrated that the multi-layer
perceptron network can overcome many restrictions. The error
of hidden (intermediate) layer units is determined by the back
propagation of the errors of the output layer units. For this
reason, this method is often referred to as the back propagation
rule. Back propagation can also be considered as the
generalization of the delta rule for multilayered networks of
nonlinear activation functions (15).

Backpropagation: Standard back propagation network; it has
an input layer, an output layer, and at least one hidden layer.
There is no theoretical limit for the number of hidden layers,
however usually one or two hidden layers are used. Each layer
is fully connected to subsequent layers (1). Multi-layer
networks operate on the principle of supervised learning. Both
inputs and outputs values must be presented to the network
during training. The task of the network is to produce the
output corresponding to that input for each input. The learning
rule of the multi-layer network is the generalized version of
the Delta learning rule based on the least squares method. For
this reason, the learning rule is also called “Generalized Delta
Rule”. This rule consists of two stages. The first is the forward
calculation phase, where the network output is calculated, and
the second is the reverse calculation phase, where the weights
are changed (4,5). Forward calculation: This phase is the
calculation phase of the network output. At this stage,
information processing begins with the display of data in the
training set from the input layer to the network. As mentioned
before, no information processing takes place in the input
layer. The incoming entries are sent to the middle layer
without any changes. This is indicated by the equation yi = xi.
Each unit in the middle layer receives the information from all
units in the input layer by weighting them with connecting
weights. Net input to the units in the middle layer is calculated
as follow;

The first is the forward calculation phase, where the network
output is calculated, and the second is the reverse calculation
phase, where the weights are changed (4,5). Forward
calculation: This phase is the calculation phase of the network
output. At this stage, information processing begins with the
display of data in the training set from the input layer to the
network. As mentioned before, no information processing
takes place in the input layer. The incoming entries are sent to
the middle layer without any changes. This is indicated by the
equation yi = xi. Each unit in the middle layer receives the
information from all units in the input layer by weighting them
with connecting weights. Net input to the units in the middle
layer is calculated as follow;= ∑ + (7)

wir: i. input layer element,
r: weight value of the connection that connects to the middle
layer unit,
xi: Output of the i. processor unit in the input layer
n1: It shows the output value of the middle layer unit.
Net input to the unit in the output layer is expressed as follow;= ∑ + (8)
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input layer is linked to the processing element in the next
hidden layer. The hidden layer processes the information from
the input layer and sends it to the output layer. Again, each
processing element in the hidden layer is linked to all
processing elements in the output layer. There can be more
than one hidden layer. The number of hidden layers and the
number of processor elements in hidden layers is found by trial

and error. The output layer processes the information from the
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rule of the multi-layer network is the generalized version of
the Delta learning rule based on the least squares method. For
this reason, the learning rule is also called “Generalized Delta
Rule”. This rule consists of two stages. The first is the forward
calculation phase, where the network output is calculated, and
the second is the reverse calculation phase, where the weights
are changed (4,5). Forward calculation: This phase is the
calculation phase of the network output. At this stage,
information processing begins with the display of data in the
training set from the input layer to the network. As mentioned
before, no information processing takes place in the input
layer. The incoming entries are sent to the middle layer
without any changes. This is indicated by the equation yi = xi.
Each unit in the middle layer receives the information from all
units in the input layer by weighting them with connecting
weights. Net input to the units in the middle layer is calculated
as follow;

The first is the forward calculation phase, where the network
output is calculated, and the second is the reverse calculation
phase, where the weights are changed (4,5). Forward
calculation: This phase is the calculation phase of the network
output. At this stage, information processing begins with the
display of data in the training set from the input layer to the
network. As mentioned before, no information processing
takes place in the input layer. The incoming entries are sent to
the middle layer without any changes. This is indicated by the
equation yi = xi. Each unit in the middle layer receives the
information from all units in the input layer by weighting them
with connecting weights. Net input to the units in the middle
layer is calculated as follow;= ∑ + (7)

wir: i. input layer element,
r: weight value of the connection that connects to the middle
layer unit,
xi: Output of the i. processor unit in the input layer
n1: It shows the output value of the middle layer unit.
Net input to the unit in the output layer is expressed as follow;= ∑ + (8)
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Network output;= ∑ ∑ + + (9)

and total error is computed by the following equation;= ∑ ( − ) (10)

Usually the sigmoid or hyperbolic tangent function is used as
the transfer function, but this is not a requirement. Since the
derivative of the function must be taken in the back
propagation, it should be stated that the selected function is a
derivable function (8). Backward calculation: The back
propagation step involves running the entire network
backwards. The difference between the output of the last layer
and the desired output is usually modified by the derivative of
the transfer function and back propagate to the previous layers.
Thus, the error is reduced in the next iteration. This process
proceeds for the previous layer (s) until the input layer is
reached. Inputs to be used as training sets and corresponding
outputs are normalized (Equation 11)

The steps can be listed as follows:

• Inputs to be used as training sets and corresponding
outputs are normalized (Equation 11)= (11)

• The initial parameters, weights and threshold of the
network are determined

• Each unit in the middle layer receives the information
from all the unit in the input layer by weighting them with
their connection weights. Net input to units in the middle layer
is calculated by the following equation;= ∑ + (12)

• The output of the intermediate layer is determined using
an activation function for the net input to the units in the
intermediate layer;= ∑ + (13)

• Each unit in the output layer receives information from all
units in the intermediate layer by weighting them with
connection weights. Net input to units in the output layer is
calculated by the following equation;= ∑ + (14)

• Output of the output layer is determined using a linear
activation function for the output layer;(∑ + ) = ∑ + (15)

• The error term, which is the difference between the actual
value and the outputs produced by the network, is the sum of
the squares error is calculated by the following equation;= = ∑ ( − ) (16)• If the Sigmoid function is used in the output unit, the
error (δ) is calculated as follows;

( ) = ( )( ) = ( )( ) . ( )( )( ) = ( ( )) ( , )∆
∆ ( ) = − ( )( ) = ( ( ))= ( − ) (1 − ) (17)

• After calculating the change amount, new weights in t.
iteration; updated weights between the input layer and the
hidden layer are calculated as follows:( )( , ) = ( )( ) . ( )( , )∆ =∆ ( ) = ( − )( + 1) = ( ) + ∆ ( )
( ) = ( ) + Ƞ∆ (18)

And the updated weights between the hidden layer and the
output layer are calculated as follows.( )( , )( ) = ( )

( )( , )( ) =( ) = ( ) + Ƞ∆ (19)

The updated value in t iteration of bias value is calculated as
follow;( )( ) = ( )( ) . ( )( )( + 1) = ( ) + ∆ ( )∆ ( ) = ( − ) (20)

At the end of these processes, all the weights of the network
will be have been changed. An iteration is completed by
making both forward and backward calculations. Then, a new
sample is given and the second iteration is started. Here, the
network error is expected to decrease in each iteration and this
is shown in Figure 3. Network error tends to decrease with
increasing iteration number. After a certain number of
iterations, the error does not decrease further. This means that
the network stops learning and a better result cannot be
achieved. These computations are continued until the
difference between the desired output and the calculated
output is minimized. The end of learning is done with a stop
criterion. This criterion generally takes place when the method
decreases to an acceptable level (8).
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Figure 3. The relationship between the number of iterations and
the error

RESULTS
NLPCA works by training a feed forward neural network to
perform mapping, where network inputs are reproduced in the
output layer.  The architecture of the neural network used for
the implementation of NLPCA is shown in Figure 4.

Figure 4. 18-6-2-6-18 NLPCA model

This architecture is a five-layer neural network, 3 of which are
hidden. This five-layer neural network creates an auto-
associative neural network. In the auto-associative neural
network model, essential components are obtained in the
bottleneck layer. If the number of bottleneck neurons is one
(as shown in Figure 1), one-dimensional nonlinear principal
component is obtained. That is, it is a one-dimensional
nonlinear curve that best fits these data. If the number of
bottleneck neurons is two, a two-dimensional nonlinear curve
is obtained that best fits the data. In the network architecture
used; a total of 5 layers were used: input layer, coding layer,
bottleneck layer, decoding layer and output layer. Nonlinear
hyperbolic tangent function is used in the coding and decoding
layer, and linear function is used in the other layers. The
Conjugate Gradient Descent (CGD) algorithm was preferred
as the training algorithm since it has a high learning speed
compared to other algorithms and the learning rate constants
are calculated automatically and adaptively thus they do not
need to be specified before training. The original data set
consists of an 18x422 matrix with 12 categories and 6
continuous variables. The number of hidden neurons in both
the coding and decoding layers is determined as M1 = M2 = 6
in the network used to realize NLPCA. The total number of
free (weight and threshold) parameters used by NLPCA was
calculated with (m + f + 1) (M1 + M2) + m + f (M1 and M2,
respectively, the number of neurons in the coding and
decoding layers, m variable number, f is the number of
neurons in the bottleneck layer). In this case, the total number
of calculated parameters for the 2 principal components is 271.

In order to see the difference of NLPCA from PCA, both PCA
and NLPCA were applied to the data set containing categorical
and continuous variables. For n = 422, the two-dimensional
(2D) PCA approach accounts for 90.08% of the total variance,
while the 2D NLPCA approach accounts for 95.65% of the
total variance. For n = 300, the 2D PCA approach accounts for
67.12% of the total variance, while the 2D NLPCA approach
accounts for 95.15% of the total variance. For n = 200, the 2D
PCA approach accounts for 66.50% of the total variance,
while the 2D NLPCA approach accounts for 95.79% of the
total variance. For n = 100, the 2D PCA approach accounts for
65.51% of the total variance, while the 2D NLPCA approach
accounts for 94.69% of the total variance (Table 2). The
results show that NLPCA successfully reduced dimensionality
regardless of the number of observations (Figure 5).

Figure 5. 18-6-2-6-18 NLPCA

DISCUSSION

In the study, the applications of both PCA and NLPCA were
made by examining the ANN approach for PCA as well as
NLPCA in order to explain NLPCA better and to examine its
effectiveness. In the analysis conducted via reducing the
number of observations, it was observed that NLPCA has a
high explanation rate compared to PCA, regardless of the
number of observations. This can be attributed to NLPCA's
ability to identify nonlinear relationships. Accordingly, it can
be stated that NLPCA gives effective results in the analysis
made with both numerical and categorical variables. In a
study, a NLPCA method integrating the basic curve algorithm
and neural networks was used. Both simulation and real
problems have been shown that NLPCA is a good approach
for both applications and can be used to solve important
process problems (3). In another study, an algorithm based on
NLPCA was developed to detect ischemic heartbeats from the
ECG signal of the patients and to accurately classify the
pulses. In the classification made with NLPCA, it was
observed that a training set containing only two non-linear
components and 1000 normal samples from each file was
correctly classified with a high rate of 80% for normal beats
and 90% for ischemic beats (18).

Table 2. Accounted variance for PCA and NLPCA

Accounted variance (%) for PCA Accounted variance (%) for NLPCA
Dimension 1 Dimension 2 Total Dimension 1 Dimension 2 Total

n=422 70.16% 19.92% 90.08% 92.20% 3.45% 95.65%
n=300 67.10% 0.02% 67.12% 91.66% 3.49% 95.15%
n=200 66.48% 0.02% 66.50% 93.22% 2.57% 95.79%
n=100 65.49% 0.02% 65.51% 94.68% 0.01% 94.69%
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In another study, the NLPCA method based on an auto-
associative neural network was used and it was stated that
NLPCA performed better than PCA in reconstructing the
water quality data of the Piabanha watersheds and also
explained most of the data variance (19).
In the study, NLPCA method that finds and models Nonlinear
Principal Components in artificial neural networks is presented
and the NLPCA method has been found to be a better
approach to solving nonlinear problems. It has also been
shown that the NLPCA method applied to health data explains
the variance better regardless of the number of observations.
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