

RESEARCH ARTICLE

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 13, Issue, 05, pp.17600-17613, May, 2021

DOI: https://doi.org/10.24941/ijcr.41531.05.2021

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

OPEN ACCESS

CHALLENGES AND PROSPECTS IN CURRENT DIAGNOSTIC TECHNIQUES AVAILABLE FOR CORONA VIRUS DISEASE-19 (COVID-19)

¹Aparna R., ²Dr. Gomathi Chitra, A., ³Dr. Manjula, S.R. and ⁴Mr. Karthik, A.

¹M.Sc. (Med. Micro), Postgraduate student, Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India; ²MD (Micro), Assistant Professor, Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India; ³MD (Micro), Assistant Professor, Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India; ⁴M.Sc. (Med Micro), Tutor, Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India; ⁴M.Sc. (Med Micro), Tutor, Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India; ⁴M.Sc. (Med Micro), Tutor, Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India.

ARTICLE INFO ABSTRACT Background: The current global pandemic (SARS Covid-19), was first detected in Wuhan, in Article History: December 2019. The increasing magnitude and significance of identifying the cases have accentuated Received 20th February, 2021 Received in revised form the importance of diagnostic approaches to Covid-19 caused by severe acute respiratory syndrome 25th March, 2021 coronavirus 2 (SARS-CoV-2). Major challenges are being faced in various phases of laboratory Accepted 18th April, 2021 diagnosis, from pre-analytical to post-analytical processes. Although the gold-standard method for Published online 30th May, 2021 testing is real-time reverse-transcription polymerase chain reaction (rRT-PCR), various limitations such as low sensitivity at early stages of infection, longer turn-around time (TAT) and influence of Key Words: external factors have been reported in various studies. Choosing ideal targetsfor nuclei acid amplification tests (NAATs) are important to increase the sensitivity and specificity of the assays and CT-scan. lower the limit of detection. At present computed tomography (CT) of chest has been reported as a Immunodiagnostic Assays, reliable diagnostic technique, even in rRT-PCR false-negative cases. Immunodiagnostic assays are NAATs, being developed recently to overcome the short-comings in rRT-PCR method, to confirm the active POCTs, SARS-CoV-2. cases, as well as determine the immune status of asymptomatic patients. Reverse-transcriptase loopmediated isothermal amplification (RT-LAMP) based assays, have been suggested as rapid, costeffective point-of-care tests (POCTs). Currently various diagnostic assays are under development based on isothermal amplification, CRISPR, nanotechnology, biosensors and AI (artificial intelligence), most with potential for POCTs. Aim: To identify and compare the relevance of various techniques and tests under development to detect Covid-19. Methods: Original articles, review articles, commentaries and short communications regarding the assays to detect Covid-19 were thoroughly examined to summarise the observations. Conclusion: Understanding the biological properties of the virus is crucial forthe development of new diagnostic approaches which can provide precise identification with high sensitivity, specificity, and short TAT, thus aiding in real-time patient management and controlling spread of infection.

Copyright © 2021. Aparna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Aparna R., Dr. Gomathi Chitra, A., Dr. Manjula, S.R. and Mr. Karthik, A. "Challenges and prospects in current diagnostic techniques available for corona virus disease-19 (covid-19)", 2021. International Journal of Current Research, 13, (05), 17600-17613.

INTRODUCTION

The very first case of COVID-19 in humans (presenting with pneumonia of unknown etiology) was reported in Wuhan city ofHubei province, China in December 2019 (1).

The etiological agent responsible was discovered as a novel coronavirus (2019-nCoV) belonging to the genera betacoronaviruses of *Coronaviridae* family, renamed on 11 February 2020 as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (2). They are enveloped, nonsegmented viruses with a positive-sense (single

stranded)ssRNA genome (30kb) with 14 Orfs coding for 27 proteins, which includes four structural proteins (S, E, M, and N) and RNA dependent RNA polymerase (RdRp). S gene codes for the spike surface glycoprotein which interacts with angiotensin converting enzyme 2 (ACE2) receptors, facilitating the entry of the virus into the host cell (3). Many studies have observed that mutations in the receptor-binding domain (RBD) such as L455Y, O493N and N501T contributes to the improved and flexible binding of the spike glycoprotein to ACE2 receptors (4,5).Although the SARS-CoV-2 virus shows ~50% and ~80% similarity to Severe Acute Respiratory Syndrome (SARS-CoV) and Middle-East Respiratory Syndrome (MERS-CoV) genomes respectively, S gene has been reported to be divergent with only <75% resemblance) compared to other 3 structural proteins which are more conserved. Comprehending the biological characteristics of the virus plays a pivotal role in development of new diagnostic approaches and in control and management of the disease (3).

SARS-CoV-2 can be transmitted between humans most commonly from nose and mouth secretions, and less commonlyby indirect contact with fomites from infected symptomatic, pre-symptomatic or asymptomatic people (4,6,11). Although may studies (4,10) report insufficient evidences on vertical transmission Vivanti AJ et al, Shende P et al, and Kotlyar AM et al, have confirmed the transmission of the virus inutero (congenital/transplacental transmission), through virological and pathological investigations, and observation that the virus can survive, and replicate as well in the placenta, leading to induction of immune responses and fetal mortality (7,8,9). The other less frequently reported route of transmission are ocular and feco-oral routes (10). The basic reproduction number (R₀), which determines the virus transmissibility (of Covid-19)for India was estimated as 1.379, while it fluctuates from 2.24 to 3.58 globally (2,12,13). Incubation period ranges from a median of 5-6 days, and may extend up to 14 days according to recent reports (11,14).

The signs and symptoms of the disease varies from personperson, ranging from subclinical, mild-flu like symptoms to severe pneumonia, and/or multi-organ failure. Although the presentation may vary, hyposmia and dysgeusia are the most commonsymptoms encountered by patients of COVID-19 (3,11,14,21-25). Higher expression of ACE2 receptors in men, and absence of female sex hormones (estrogen receptors)may be some of the contributing factors to the high susceptibility of men to the disease (15,16,17,18). Comparatively low percentage of people complain with gastrointestinal symptoms such as diarrhoea and vomiting. ACE2 receptors are found abundantly in the alveolar epithelium of lung and brush-border epithelium of enterocytes in small intestine, showing consistency with the clinical presentation in patients (11,15,17). Diagnosis of both clinically suspected cases and subclinical cases are equally important to control the spread of infection (19,20,21,26). Challenges and limitations faced in laboratory diagnosis of Covid-19 spans from pre-analytical to post-analytical stages (Fig. 1), which, if not resolved, can have an impact on the accuracy of diagnosis and management of patients (2,24,27). Nucleic acid amplification tests (NAATs) are currently being used for diagnosis of Covid-19, which requires complete knowledge of the viral genome, so as to prepare primers and probe sequences (28,29,30). Despite the fact that new, rapid and more sensitive diagnostic approaches are being developed to diagnose Covid-19, real time reverse

transcription-polymerase chain reaction (rRT-PCR) remains to be the gold standard technique.

Some of the major drawbacks faced in rRT-PCR include limit of detection, ruling out false-positive and confirming falsenegative results, increased turn-around-time (TAT), requirement of trained laboratory personnel, and financial input. Rapid and accurate diagnostic assays for Covid-19 is necessary to contain the global pandemic (2,3,13,21,). As rapid and accurate diagnostic assays for Covid-19 is necessary to contain the global pandemic, this review focuses on discussing the diagnostic assays used currently, challenges faced and the future developments being undertaken to overcome the drawbacks.Review articles, commentaries, letters. retrospective and prospective studies on laboratory diagnosis were analysed to identify various the diagnostic approaches both current and future developments for rapid and precise detection of SARS-CoV-2.

CURRENT DIAGNOSTIC TECHNIQUES

The diagnostic approaches used currently are based on detection of amplified viral RNA from the clinical samples, which indicates the active stage of virus, antibodies (IgG and IgM) against the viral proteins in the serum, which can aid in monitoring the immune status of patients and abnormal features analysed in chests CT-scans by radiologists for an add-onto clinical diagnosis. Thus, the diagnostic approaches to COVID-19 can be stratified into clinical and paraclinical diagnosis (21,22,26,27). Clinical diagnosis involves, physical examination of the patient, clinical presentation, and radiological features, while para-clinical diagnosis involves molecular assays, immunodiagnostic assays, viral culture, (histopathology and autopsy findings), and genome sequencing. Genome sequencing can aid in studying mutations in the virus, designing primers and probes for NAATs, and can be used predominantly for research purposes (1,26,27,28,29).

Molecular diagnostic assays (MDA): The presently available different MDA are rRT-PCR, isothermal amplification techniques (RT-LAMP, NASBA; Nucleic Acid Sequence-Based Amplification), and CRISPR-based techniques. ICMR has approved different rRT-PCR assays with high sensitivity and specificity to detect SARS-CoV-2 virus, with minimal amount of challenges (2,21,30-32). Isothermal amplification techniques such as loop-mediated isothermal amplification (LAMP) has been reported to have higher efficiency and shorter turn-around-time (TAT) compared to PCR assays (1,3,29). Other potential isothermal amplification assays include PSR (Polymerase Spiral Reaction), HAD (Helicase Dependent Amplification), and TMA (Transcription Mediated Amplification) (19,33).

rRT-PCR (Real time Reverse Transcription-Polymerase Chain Reaction): rRT-PCR techniques are considered to be reliable, and the gold-standard method for diagnosis of SARS-CoV-2 RNA from clinical samples, even though viral isolation and culture are the conventional gold-standard methods, they are tedious and impractical methods which requires longer turn-around time in the present scenario for confirmation of diagnosis, and also presents a risk of spread of infection to healthcare workers. (33-37) .One of the challenges faced in this technique is the resolving of false-negative and falsepositive results (38-41). Even though the sensitivity of an assay may be 90% or higher, the percentage of risk attributed to false-negative results is significant, as it may relaxpatients from wearing of masks / maintenance of social distancing (42).

Figure I: Pre-analytic, analytic, and post-analytic challenges faced in the diagnosis of SARS-CoV-2 infection

Selection of specimen type: The nasopharyngeal swabs have been reported to have more sensitivity compared to other upper respiratory tract specimens, while sputum and bronchoalveolar lavage (BAL) are considered ideal samples for detection of viral loads in lower respiratory specimens (43,44,46). Tan W et al (43), had investigated the positive rates of SARS-CoV-2 isolation in various samples (1070 specimen) through rRT-PCR method, and found that bronchoalveolar lavage had the highest positive rates (93%), followed by sputum (72%), and nasal swabs (63%). Faeces (29%) and blood (1%) had the lowest positive rates, suggesting the rare incidence of systemic spread, while none of the urine samples tested to be positive. Zhang W et al (45) observed that oral swabs were more positive (53.3%), closely followed by blood (40%), anal swabs (26.7%), and serum (20%), among which anal swabs were found to be positive after day 5 showing a change in trend of high viral load from oral to anal swabs as time passes. Collection of the specimen should be performed using swabs while wearing PPE (personal protective equipment) (44).

Wolfel R et al. (47), analysed the viral load in various samples, and found that sputum samples, had the highest viral load (7 \times 10⁶ copies per ml) which remained detectable for a long period of time (1 week). Nasopharyngeal and oropharyngeal swabs had a viral load of 6.76×10^5 copies per whole swab, which gradually decreased after day 5, while urine and serum yielded no detection of virus. Although virus was detectable in fecal samples, the load was $<10^6$ copies/ml and viral isolation was unsuccessful (49,50,51). Some studies (27,33,48) have reported the detection of viral RNA in placental tissues, amniotic fluids, tears and conjunctival secretions also. Saliva has also been reported as a reliable specimen which can be used to gather information about the evolution of the disease apart from qualitative analysis (52,53). Rapid salivary test validated as a POCT by Azzi L et al (54) showed a high sensitivity of 93%, but a comparatively lower specificity of 42%, and was found to confirm/resolve the false positive/false negative results in the rRT-PCR testing of saliva and nasopharyngeal samples of the same patients.

Quite recently rectal swabs and stool samples have been evaluated for detection of viral RNA, and research studies show an increased sensitivity of the virus in asymptomatic cases and symptomatic patients for a longer time period, even when the viral loads had become undetectable in respiratory samples (after 3rd week of PSO; post symptom onset). This also points towards the possible feco-oral transmission (49-51,55). Further research into the sensitivity of viral RNA detection from stool samples can aid in reduction of transmission from patients to healthcare workers (29,51). Some of the samples that may be best to collect from COVID-19 patients are being researched in many studies. Yelin I et al (57)had observed that a single sample with the viral RNA can be frequently detected in a pool of up to 32 samples and a lower percentage of false-negatives on pooling. Pooling of samples can be used in monitoring of healthcare workers and determining the frequency of viral RNA carry-over among the population.

Collection, Transport and Processing: Collection, transport and processing of specimens can have a direct influence on the result, based on the influencing factors such as specimen quantity, expertise of the personnel collecting and processing, time of collection, transport conditions and time taken, as well as on the type of assay used. The collected specimens should be preferably transported to the laboratory in a universal viral transport medium (VTM), in refrigerated conditions (2-8°C) (20,38,57,58). Radbel J et al (60) establish the use of phosphate buffered saline (PBS) as a clinically important transport medium for short-term preservation of SARS-CoV-2 containing clinical specimens through their study. The collection of specimens is performed by twirling the swab with non-flocked synthetic fibres and synthetic nylon handles, three times (for 10seconds) from the required site. Processing of all respiratory specimens should be performed in bio-safety cabinet class II (BSC II) or higher which increase the cost of processing of samples. In order to perform rRT-PCR, the collected sample should be transferred to a lys is buffer to degrade the envelope coating of the virus and to prevent degradation of the viral RNA which increases the cost of consumables used for testing, compared to other techniques where direct sample can be used (20). In case of TrueNAT test, samples should be sent in viral lysis buffer and not in viral transport medium (21).

Target Selection: Selection of two targets is ideal to perform the assay, to increase the specificity of detection. The ideal design of a target involves one conserved region, and one specific region, to escape the effects of mutation so as to specifically target SARS-CoV-2 (1,3). The CDC recommends the use of N1 and N2 proteins, while WHO recommends RdRp, E, N, and S in different combinations (2). Most studies recommend the use of RdRp/Hel genes which has a high analytical sensitivity of 95%, lowest limit of detection and no cross- reactivity, which may aid in the reduction of falsenegative cases. This assay was found to be comparatively better than RdRp-P2 assay, which has been reported crossreact with SARS-CoV in cell culture portraying reduced specificity (60-62). Use of dual targets E and RdRp genes, have been observed to improve the sensitivity of detection, and decrease the time period of detection as well. Use of E gene as a target, has been observed to perform better with higher sensitivity, significantly lower Ct values and for longer period of time compared to that of RdRp gene detection values (61).

Ct value: Interpretation of results varies within different countries and assay kits used. In patients with symptoms, the cycle threshold values can be detectable at a very early stage in the results (2,38). The number of cycles required for the fluorescence signal produced in a reaction to significantly cross the florescence threshold is defined as the cycle threshold (Ct) value. Ct values less than 40 are generally considered to be a positive result, which may vary with different manufacturer (63-69). ICMR (Indian Council of Medical Research) does not recommend relying on Ct values to determine the severity of the disease, while some studies have observed that low Ct values may indicate high viral loads can be used as an indication of transmissibility, and severity (68-71). The limit of detection of COVID-19 RT-PCR is 6.25cp/µl, as given by FDA. TRUPCR SARS-CoV-2 RT-qPCR Kit (2tube assay), Helini Coronavirus Real-Time PCR kit (single tube assay), Meril COVID-19 One-step RT-PCR Kit (single tube reaction), are some of the rRT-PCR kits which detects E/N/RdRp genes, RdRp/ORF gene, N/ORF 1ab genes of SARS-CoV-2 respectively within a time period of 20-60 minutes with >95% sensitivity and specificity - approved by ICMR.

ISOTHERMAL AMPLIFICATION ASSAYS: The major advantage of isothermal amplification techniques over rRT-PCR technique is that it does not require the thermocycler. This technique is more useful to detect the viral RNA in crude samples, as they cannot be easily inhibited (19,72). They have a good potential for development to point of care tests (POCTs), as they are temperature independent unlike rRT-PCR.

TrueNAT RT-PCR: Truenat[™] COVID-19 is a chip-based Real Time duplex Reverse Transcription Polymerase Chain Reaction (RT PCR) test for the semi quantitative detection of SARS CoV-2 RNAin human oropharyngeal and nasopharyngeal swab specimen and aids in detection and confirmation of SARS CoV-2 infection and diagnosis of COVID-19. The test detects the E and Orf1a genes of the virus. Truenat[™] COVID-19 runs on Truelab®Real Time Quantitative micro PCR Analyzers. Truenat[™]COVID-19 works on the principle of Real Time Reverse Transcription Polymerase Chain Reaction (RT PCR) based on Taqman chemistry. It enables same-day testing and reporting. This allows for faster patient isolation if required.

RT-LAMP: Reverse transcription loop mediated isothermal amplification (RT-LAMP) assay is specific, and efficient with simple protocol for sample preparation, and processing (3). They require a single temperature for the process, do not require any special expensive equipment such as thermocyclers to enhance the sensitivity of the reaction, and the visualisation of results is effortless. This has great potential to be developed as POCTs. Since RT-LAMP techniques can eliminate the step of purification of cDNA from reverse transcriptase, the reaction time can get reduced, enabling quick detection of the viral RNA (3,48). The challenge faced in the utilisation of LAMP assay is the requirement to optimise design of specific primers and conditions for smooth performance of the reaction. The assays have a TAT of approximately < 1 hour with a limit of detection of ~75 copies per µl (64,73,74). Zhang Y et al (74) explored the performance of calorimetric LAMP as a diagnostic assay for detection of SARS-CoV-2, and found it to be equally efficient as rRT-PCR, without any complicated instrumentation, useful in field testing type settings. Samples can be processed directly in this assay, skipping the RNA

purification step. All these models have a great potential to be developed as POCTs. In India, Sree Chitra Tirunal Institute for Medical Sciences & Technology (75) developed LAMP diagnostic test for detection of SARS-CoV-2 and the kit is commercially called as 'Chitra Magna'. iLACO (isothermal LAMP based method for COVID-19) is a rapid calorimetric assay for detection of samples containing RNA and cDNA of SARS-CoV-2 within 20-30 minutes at 65°C. They can easily be used even in small laboratory settings, and has a lower limit of detection of up to 10 copies of Orf1ab target in the sample (76). POC RT-LAMP assays are assays under development which can deliver results within 15 minutes, eliminating the need of expensive equipment and fulfil the growing need for screening affected population (60).

NASBA and POCTs: Nucleic Acid Sequence Based Amplification, is one of the isothermal amplification techniques, currently developed and used for diagnosis of COVID-19. Unlike other NAATs, the final product in NASBA is single-stranded RNA with an opposite polarity to target sequence which is complementary (33,75). INSIGHT (Isothermal NASBA-Sequencing-based hIGH-throughput Test) - a barcoded isothermal NASBA assay, is a 2-stage testing strategy, which uses a combination of bed side diagnosis with whole genome sequencingfor COVID-19. It has a good sensitivity with a limit of detection of 50 copies per 20µl, which is comparable with qPCR. Additional research is required to develop this assay as POCTs (77).

CRISPR-BASED ASSAYS: It is a rapid detection assay with high sensitivity, efficient analysis, which does not require expert trained personnel or high financial input. Various clustered regularly interspaced short palindromic repeats (CRISPR) assays are being evaluated for their sensitivity and performance for nucleotide detection. CRISPR-Cas12a approach, DNA endonuclease-targeted CRISPR trans reporter (DETECTR) has currently been reported to distinguish clinical samples containing human papillomaviruses with 96% sensitivity (30,78).

The SHERLOCK method developed by Sherlock Biosciences uses Cas13 that is capable of excising reporter RNA sequences in response to activation by SARS-CoV-2-specific guide RNA (19). SHERLOCK has also been developed as point of care test named STOP; SHERLOCK Testing in One Pot, which does not require extraction of RNA from samples, and works within three steps in 1 hour 30 minutes - lysis of viral RNA, detection of RNA by STOP reaction, and visual detection of results by paper-dipstick (32). The DETECTR assay by Mammoth Biosciences relies on the cleavage of reporter RNA by Cas12a to specifically detect viral RNA sequences of the E and N genes, followed by iso- thermal amplification of the target, resulting in a visual readout with a fluorophore. SHERLOCK in combination with HUDSON (heating un-extracted diagnostic samples to obliterate nucleases) has been used directly in the battle against SARS-CoV-2 (30,75). 'All-In-One Dual CRISPR- Cas12a' (termed 'AIOD-CRISPR') assay for low-cost, fast (typically 5-20 min), ultrasensitive, precise and visual detection of nucleic acid has been developed by the University of Connecticut Health Centre (32,36). Some of the factors that can hinder the precise detection of nucleotide include off-target effects of CRISPR and CRISPR/Cas effectors which tend to show tolerance to mismatches between the guide RNA and target nucleotides (36). Based on RPA (recombinase polymerase amplification), CRISPR-nCoV (CRISPR novel coronavirus), which detects Cas13 has been reported to have very low limit of detection (LoD) of approximately one copy per reaction with high sensitivity and reduced turn-around-time (TAT) (30,36).

Table I. Comparison of ICMR approved RT-PCR kits for detection of specific gene targets of SARS-CoV-2

S. No.					TURN					
			CONCENTRATION	TADODT	AROUND	GENGUE	LIMIT of	SPECIFICITY/CDOG		
	NAME OF THE KIT	SDECIMEN TVDE	OF MASTER MIX	TARGET CENE (S)	TIME (TAT)	SENSIT	DETECTION (LoD)	SPECIFICITY/CROS	DESULT	I IMITATIONS
1	NAME OF THE KIT	SPECIMEN I IPE	AND LEST SAMPLE	GENE (5)	(\mathbf{IAI})	11111	(LOD)	S-REACTIVITY	KESULI Of values and shape of	LIMITATIONS
1.			Master mix - 22 50ul		~20		25	Does not cross-react	amplification curve are	Cannot be used on specimen
	A*STAR FORTITUDE KIT 2.0	Nasopharyngeal swab	Test sample - 2.5µl	NR	minutes	99%	copies/reaction	with other CoV	taken into consideration	directly
2.			• •						Ct values and shape of	
	LyteStar TM SARS-CoV-2 RT-	Human respiratory	Master mix - 20µ1;		~50				amplification curve are	
	PCR Kit 1.0 S	specimens	Test sample - 5µl	E gene	minutes	≥ 95%	2.72 copies/µl	NR	taken into consideration	NR
3.		Respiratory							C	
	AFEIGENIX COVID 10 TEST	specimens/serum,	Mastar mix 711: Tast	N /OPE 1ab					ct values and snape of	Connot be used on specimen
	(ACT) KIT	tissues	sample - 8ul	gene	~20 minutes	NR	NR	NR	taken into consideration	directly
4.	(101) 111	100400	sumpto opr	gene	minutes	1.11				Other sample types cannot be
	RealStar® SARS-CoV-2 RT-	Human respiratory	Master mix - 20µ1;		~25			Does not cross-react	Ct values are taken into	used/Cannot be used on
	PCR Kit 1.0	specimens	Test sample - 10µl	E/S gene	minutes	95%	1*10 ⁻¹ PFU/ml	with other CoV	consideration	specimens directly
5.										Not a quantitative
		••	Master mix - 20µl;		20				Ct values and shape of	test/Cannot be used on
	TRUPCR SARS-CoV-2 RT-	Human respiratory	Test sample - $5\mu I$ (in	E/N/RdRp	~20	82 060/	10 copies/ul	100%	amplification curve are	specimen directly/Validated
6	1 copy COVID-19 aPCR Tripley	Nasopharyngeal/Oropha	Master mix - 10ul	genes	minutes	82-90%	To copies/µ1	100%	No mention on Ct	Mutations can lead to false
0.	Kit (single tube reaction)	rvngeal swab	Test sample - 5ul	E/N gene	NR	95-100%	5 copies/reaction	100%	values	results
7.		-)8								Other sample types cannot be
	Detection Expert 1S © SARS	Human respiratory		N1/N2/RNas					Ct values are taken into	used/Cannot be used on
	CoV-2 One Step rRT-PCR Kit	specimens		e P gene	NR	100%	100GCE/reaction	100%	consideration	specimens directly
8.			Total components -					Shows 100% homology	~	~
	Helini Coronavirus Real-Time	No specific sample	15µl; Test sample -	RdRp/ORF	ND	05%	0.65 aprice/ul	to wide range of clinical	Ct values are taken into	Cannot be used on specimen
0	Covidsura Pro Multiplay PT	Human respiratory	Ιθμι	gene E/N/OPE 1ab	INK	93%	0.65 copies/µ1	reference sequences	No montion on Ct	Cannot be used on specimen
9.	PCR kit	specimens	NR	genes	1 hour	100%	< 5 copies/ul	100%	values	directly
10.		specimens		genes	Thou	100/0		10070	, and o	Cannot be used for
	SARS-CoV-2 Fluorescent PCR	Oropharyngeal swabs	qRT-PCR mix - 20µ1;	E/N/ORF 1ab				Shows 100% identity to	Ct values are taken into	differential diagnosis of
	Kit (for RUO)	and sputum specimens	Test sample - 20µ1	genes	2 hours	99.56%	1000 copies/ml	all SARS-coronaviruses	consideration	SARS-coronaviruses
11.	DiagSure nCOV-19 Detection			ORF						
	assay (Taqman based) (single	Nasopharyngeal and		1ab/N/RNase	1.51	ND	100 1		No mention on Ct	Mutations in target sequence
10	tube reaction)	throat swab samples	NK	P genes	1.5 hours	NK	100copies/ml	NK	values	can lead to false results
12.	RealCycler CORO-G Real Time	Nasopharyngeal and							No mention on Ct	Mutations in target sequence
	PCR Kits	nasal swabs	NR	E gene		> 95%	1 copy/u1	NR	values	can lead to false results
13.		Sera/Nasopharyngeal		· · دی		~ ~ ~ ~				
	Meril COVID-19 One-step RT-	and Throat		N/ORF 1ab			< 5	100% (No cross-	No mention on Ct	Mutations in target sequence
	PCR Kit (single tube reaction)	swab/Sputum	NR	genes	65 minutes	100%	copies/reaction	reactivity detected)	values	can lead to false results
14.					15 minutes		0.7 copies/µ1			
	CARCOVA Multiplan PCR		Mastan min 10-1	E (N/D JD.,	(PCR		(KNA); 1.6	Ne mene meneticite	No montion on Ci	Mutations in target another
	kit (for RUO)	NR	Test sample - 9ul	genes)	> 95%	Template)	reported	values	can lead to false results
		1 111	rest sample - jui	50103	/		i empiace)	reported	14400	can read to raise results

Continue

15								No cross-	Ct values and shape of	
	Real-Q 2019-nCoV	Human respiratory	Master mix - 20µl;		~50		6.25	reactivity	amplification curve are	Mutations in target sequence can lead to
	Detection Kit	specimens	Test sample - 5µ1	E/RdRp genes	minutes	≥ 95%	copies/µ1	reported	taken into consideration	false results
16.							0.005			Other sample types cannot be used/Cannot
	W IO W						(N2) and	No cross-		be used on specimens directly/Cannot rule
	Xpert [®] Xpress	Human upper	Master mix - 6ml;	E 0.12	ND	> 0500	0.02	reactivity	Ct values are taken into	out diseases caused by other bacterial or
17	SARS-Cov-2	respiratory specimens	Test sample - 300µ1	E/N2 genes	NK	≥ 95%	PFU/ml	reported	consideration	viral pathogens
17	EUDOBaalTima	Humon unnor	Master mir 10ul				150	NO Cross-	Ct values are taken into	Connot rule out discoses sourced by other
	SARS-CoV-2	respiratory specimens	Test sample - 10µ1,	N/ORE 1ab genes	a 2 hours	05%	ropies/ml	reported	consideration	bacterial or viral pathogens
18	NeoPlay TM	respiratory specifiens	Test sample - Tour	N/OKI ⁺ Tab genes	~2 nours	9370	50	Teponeu	Ct values and shape of	bacterial of viral pathogens
10	COVID-19	Human respiratory	Master mix - 15ul				conjes/rea	Might cross-react	amplification curve are	Mutations in target sequence can lead to
	Detection Kit	specimens	Test sample - 5ul	N/RdRn genes	2 hours	> 95%	ction	with SARS-CoV	taken into consideration	false results
19	Detection Int	specimens	rest sample 5µ1	ronding genes	2 110415		etton	with brinds cov		Performance established using NP swabs
17										and sputum only/SARS like coronaviruses
										may cross-react with RdRp primer/Impact of
										vaccines, immunosuppressant drugs not
										evaluated/Cannot rule out diseases caused by
										bacterial and viral pathogens/Cannot be used
	PowerChek TM		Master mix -					No cross-		on specimen directly/E gene signal could not
	2019-nCoV Real-	Human respiratory	15.5µl; Test sample		~45		4	reactivity	Ct values are taken into	differentiate SARS-CoV or SARS related
• •	time PCR Kit	specimens	- 4.5µl	E/RdRp genes	minutes	≥ 95%	copies/µ1	reported	consideration	coronaviruses
20	T LO TM	Nasopharyngeal and	N		50		100	No cross-	Ct values and shape of	
	LabGun ^{1M}	oropharyngeal	Master mix - 16µl;	E /D 1D	~50	> 0500	copies/rea	reactivity	amplification curve are	
21	COVID-19 Assay	swabs/sputum/BAL	Test sample - 4µ1	E/RdRp genes	minutes	≥ 95%	ction	reported	taken into consideration	Other samples are not evaluated
21		Nasopharyngeal,								
		nessal and mid turbinate								
		nasal and initi-turbinate								Does not reflect viral load in
	LabGun TM	swabs/nasopharyngeal						No cross-	Ct values and shape of	specimen/Performance evaluated with NP
	COVID-19 RT-	wash/aspirate or nasal	Master mix - 15ul:		~50		20	reactivity	amplification curve are	swabs and sputum only/Mutations may lead
	PCR Kit	aspirate/sputum	Test sample - 5µl	E/RdRp genes	minutes	≥ 95%	copies/µ1	reported	taken into consideration	to false results
22	Novel Coronavirus	1		10						
	(2019-nCoV)	Nasopharyngeal,								
	Nucleic Acid	oropharyngeal, anterior								Mutations in target sequence can lead to
	Diagnostic Kit	nasal and mid-turbinate						No cross-	Ct values and shape of	false results/Performance established with
	(PCR-Fluorescence	swabs/nasal washes and	Master mix - 30µl;		~45		200	reactivity	amplification curve are	NP and OP swabs/the gene probes may
	Probing)	aspirates	Test sample - 50µ1	N/ORF 1ab genes	minutes	≥ 95%	copies/ml	reported	taken into consideration	detect bat and pangolin coronaviruses
23		Nasopharyngeal,								
	STANDARD M	oropharyngeal, nasal	Master mix -		20		0.5	Cross reactive		Impact of vaccines, immunosuppressant
	nCov Real-Time	and mid-turbinate nasal	20.5µI; Test sample	E/OPE 1ab gapag	~20 minutos	0.5%	0.5	with SARS-Cov	Ct values are taken into	drugs not evaluated/cross reactive with
24	Detection Kit for	swab/sputuin	- 10µ1	E/OKF Tab genes	minutes	93%	copies/µ1	and Sarbecovirus	consideration	SARS-COV
24	2010 Novel									
	Coronavirus (2019-									
	nCoV) RNA (PCR-							No cross-	Ct values and shape of	
	Fluorescence		Master mix - 20u1:		~30		500	reactivity	amplification curve are	Mutations in target sequence can lead to
	Probing)	Throat swabs/Sputum	Test sample - 5µl	N/ORF 1ab genes	minutes	95%	copies/ml	reported	taken into consideration	false results
25	Real-time	<u>r</u>	4 · · · · ·							
	fluorescent RT-									
	PCR kit for							No cross-	Ct values and shape of	
	detecting 2019-		Master mix - 20µl;		~30	≥95%	100	reactivity	amplification curve are	Mutations in target sequence can lead to
	nCoV	Throat swabs/BAL	Test sample - 10µ1	ORF 1ab gene	minutes		copies/ml	reported	taken into consideration	false results

Continue ...

26	ProTect TM COVID-19							No cross-reactivity	No mention on Ct	
	PCR Kit	Nasopharyngeal swab	NR	N gene	1 hour 15 minutes	≥ 95%	10 copies/reaction	reported	values	NR
27							<u>^</u>	Shows 100% homology		
								to wide range of		Other samples
	GeneFinder [™] COVID-19		Master mix - 15µl;					clinical reference	Ct values are taken	are not
	PLUS RealAmp Kit	Throat swab/Sputum/ BAL	Test sample - 5µl	E/N/RdRp genes	~30 minutes	95%	10 copies/reaction	sequences	into consideration	evaluated
28	Å	<u>I</u>	1 1	10			1	Shows 100% homology		Mutations in the
	HELINI Coronavirus							to wide range of		target sequence
	[2019-nCoV] Real-time		Master mix - 15ul:	PAN coronavirus/2019-				clinical reference	Ct values are taken	can lead to false
	PCR Kit	None specified	Test sample - 10ul	nCoV	~45 minutes	> 95%	1 copy/ul	sequences	into consideration	results
29		· · · · ·						1		Mutations in the
										target sequence
		Respiratory specimens	Master mix - 17ul:					98% (No cross-	No mention on Ct	can lead to false
	ViroO SARS-CoV-2	(sputum/swabs)	Test sample - 5ul	E/RdRp genes	~30 minutes	100%	5 copies/20u1	reactivity detected)	values	results
30	11020110 001 2	(spataliti s (tabs)	rest sample opr	L'itarip genes	20 111111110	10070	o copies, zopr	Teach (1) decerced)	, and by	Performance
50										validated in 3
										PCR systems
										only/Cannot
									Ct values and shape	rule out diseases
	Coronavirus (COVID-19)								of amplification	caused by other
	genesig® Real-Time PCR	Nasonharyngeal and	Master mix - 12ul					No cross-reactivity	curve are taken into	bacterial or viral
	assay	oropharyngeal swabs/sputum	Test sample - Sul	NR	~15 minutes	> 95%	0.58 copies/ul	reported	consideration	nathogens
31	ussuy	oropharyngear swabs/sputum	Test sample - oµ1	Tuk	15 minutes	2 7570	0.50 copies/µ1	Teponeu	Ct values and shape	Mutations in the
51								99.71-99.99% (No	of amplification	target sequence
	abTESTM COVID-19	Nasopharyngeal and throat	Master mix - 15ul				2.2 copies/ul (N1):	cross-reactivity	curve are taken into	can lead to false
	aPCR I Kit	swah/sputum	Test sample - 5ul	N1/N2 gene	~15 minutes	> 95%	1.8 copies/ul (N2)	detected)	consideration	results
32	qi ek i ku	swab/spatali	Test sample - 5µ1		15 minutes	2 7570	1.0 copies/µ1 (112)	detected)	consideration	Impact of
52										vaccines
										immunosuppres
										sant drugs not
	AccuPower® SARS-CoV-									evaluated/Other
	2 Multiplex Real-Time	Nasonharyngeal and	Master mix - 10ul				6 copies/ul (E): 2	No cross-reactivity	Ct values are taken	samples - not
	RT-PCR Kit	Oropharwngeal swabs/sputum	Test sample - 10µ1	E/N/RdRn genes	~30 minutes	05%	conjes/ul (N/RdRn)	reported	into consideration	validated
33	KI-I CK KI	Gropharyngear swabs/sputum	rest sample - 10µ1	Lin Kurp genes	- 50 minutes	1570	copies/µr (rv/kukp)	reported	into consideration	Other sample
55										types are not
										validated/Carpo
										t rule out
										diseases caused
										hy other
1	QuantuMDx SARS-CoV-2	Human unner respiratory	Master mix - 15ul					No cross-reactivity	No mention or Ct	bacterial or viral
1	RT-PCR Detection Assay	specimens	Test sample - 5µl	N/S/ORE 1 genes	~15 minutes	95%	10 conjes/reaction	reported	values	nathogens
34	Liferiver Novel	Naconharyngeal and	rest sample - Jµ1	TVD/OINT 1 genes	15 minutes	15/0	10 copies/reaction	reporteu	values	Pathogens
54	Coronavirus (2019-rCoV)	orpharyngeal allu								
	Real Time Multipley PT	swahs/BAL/deen cough	Master mix - 21.11						No mention on Ct	
	PCR Kit	snutum	Test sample - 4ul	E/N/ORE 1ab genes	NR	> 95%	1000 copies/ml	98 1-100%	values	NR
1		opanali	i cor oundre - tul		1 111	1 - 20/0	1000 00000/111	2011 100/0	14460	1 14 1

Table II: Comparison of ICMR approved and validated ELISA kits for antibody detection

			SPECIMEN						
C No	NAME OF THE TEST	MANUFACTURI	TYPE	Incubation	ANTIGEN (S)	OF NICIPITY (TTX)	SPECIFICI	DECLUT	
5. INO.	NAME OF THE TEST	NG COMPANY	(VOLUME)	ume	USED	SENSITIVITI	11	RESULI Results read at	LIMITATIONS
	COVID KAVACH Anti-	Trivitron Healthcare						450nm/Oualitative	
1.	SARS CoV-2 Human IgG	Pvt. Ltd., Mumbai						detection of IgG	
	ELISA	(Maharashtra), India	Serum/Plasma	130 minutes	NR	98%	100%	antibody	NR
									Cross-reactivity
								Results read at 450nm;	observed with anti-
								Reference wavelength -	SARS-CoV-1 IgG
	FUROIMMUN Anti-SARS-	Euroimmun US	Human		S1 domain of			detection of IgG	be used to screen
2	CoV-2 ELISA (IgG)	Inc., USA	serum/plasma	~ 150minutes	spike protein	90%	100%	antibodies	donated blood
		YHLO iFlash,		10 0111111100	opine protein	90% (IgM);	95% (IgM);		donated crood
3.	SARS-CoV-2 IgM/IgG	China	Human serum	NR	NR	95% (IgG)	95% (IgG)	NR	NR
		Voxtur Bio Ltd.,			SARS-CoV-2			Qualitative detection of	
	VOXEL Anti-SARS COV-2	Mumbai	Human		whole cell			IgG antibody against	
4.	IgG Antibody detection kit	(Maharashtra) India	serum/plasma	NR	antigen	NR	NR	SARS-CoV-2	NR
	Erbaliaa COVID 10 Jac	Iransasia Bio-		50 minutes et	Decombinent			Results read at 450nm;	
	antibody FLISA (simple one-	Mumbai	Human serum	room	spike subunit			630nm/Semi-	
5.	step serum dilution)	(Maharashtra), India	(10µl)	temperature	antigen	98.30%	98.10%	quantitative assay	NR
				1				Results read at	
								450nm/Qualitative	
	ICMR-NIV Anti-SARS CoV-	Meril Diagnostics	Human	130 minutes at	SARS-CoV-2			detection of IgG	
6	2 Human IgG ELISA COVID	Pvt. Ltd., Vapi	serum/plasma	different	whole cell	02 200/	1000/	antibody against SARS-	ND
0.	KAVACH – MERILISA	(Gujarat), India	(SµI)	temperatures	anugen	93.30%	100%	COV-2 Posults read at	INK
	COVID KAWACH IGG							450nm/Qualitative	
7.	MICROLISA	J. Mitra & Co. Pvt.	Human					detection of IgG	
		Ltd., Delhi, India	serum/plasma	130 minutes	NR	96.33%	100%	antibody	NR
		DIA.PRO			Spike protein 1				
	Dia.Pro COVID-19 IgG	Diagnostic	Human	ND	and 2,				ND
8.	ELISA	Bioprobes Srl, Italy	serum/plasma	NR	nucleocapsid	NR	NR	NK	NR
		Laboratories Pyt						Qualitative detection of	
	ELISafe 19 TM antibody test	Ltd., Mumbai	Human					IgG antibody against	
9.	kit	(Maharashtra), India	serum/plasma	NR	NR	100%	99%	SARS-CoV-2	NR
		Shenzhen Mindray	Human						
		Bio-Medical	serum/Heparin		SARS-CoV-2				Heterophilic
10		Electronics Co.	plasma or EDTA		whole cell				antibodies can
10.	SARS-CoV-2 IgM (CLIA)	Ltd., China	piasma (10µl)	NR	antigen	NR	NR	NK	cause interference

Table III: Comparison of ICMR approved and validated rapid test kits for detection of IgG/IgM against SARS-CoV-2

							TEST			
S		MANUFACTURING	кіт				RESULTS	SENSITIVIT		
No.	NAME OF THE TEST	COMPANY	STORAGE	SPECIMEN TYPE	SPECIMEN STORAGE	VOLUME	BEFORE	Y	SPECIFICITY	LIMITATION/PRECAUTIONS
										Quantitative value of SARS-CoV-2
										antigen cannot be determined/Quality
									00.68% (May	and concentration of collected specimen
	STANDARD [™] O COVID-19 Ag	SD Biosensor, South			Up to 1 hour at room temperature/4				cross-react with	sensitivities between adults and children
1.	Test	Korea / India	2-30	Nasopharyngeal swab	hours at 2-8	350 µl	15-30 minutes	96.52%	SARS-CoV)	may be observed
		LabCare Diagnostics								
	ACCUCAPE TM COVID 10 Inc. /	Ltd., India (Supplied by			Commun can be stored up to 2.9 for 5					Limited to qualitative
2	IgM Lateral Flow Assay Test Kit	Solutions)	2-30	Serum/Plasma/Whole blood	days/-20 for longer storage	10 ul	15-20 minutes	93 75%	96 40%	affect results
	-g								,,.	
										NR
	BIOCARD Pro COVID-19 Rapid	Trivitron Healthcare Pvt.			Up to 1 hour at room temperature/4					
3.	Antigen kit	Ltd., India	4-30	Nasopharyngeal swab	hours at 2-8	NR	15 minutes	100.00%	99.40%	
	COVID10 Ag PaspiStrip	Coris Bioconcent		Liquid sample/Elocked					98.3-100% (May	
4.	(Dipstick)	Belgium	4-30	swab	NR	100 ul	30 minutes	60-85.7%	SARS-CoV)	NR
	(Quantitative value of SARS-CoV-2
										antigen cannot be determined/Specimens
										collected after 5 days PSO are likely to
	Vstrin COVID-19 Antigen Rapid	Panion & BE Biotech			Up to 1 hour at room temperature//					be negative/Minor changes in target
5.	Test	Taiwan	15-30	Nasopharyngeal swab	hours at 2-8	NR	10 minutes	83.30%	98.10%	detection
VALIDATED BUT NOT APPROVED RAPID KITS										
6.	STANDARD™ F COVID-19 Ag	SD Biosensor, South			Up to 1 hour at room temperature/4					
	FIA (Fluorescent immunoassay)	Korea/India	2-30	Nasopharyngeal swab	hours at 2-8	NR	30 minutes	NR	NR	NR
7	Makesure COVID 19 IgM/IgG Rapid Antibody Test				Serum can be stored up to $2-8$ for 5	Serum/Plasma -				Limited to qualitative detection of
7.	(Immunochromatographic assay)	HLL Lifecare Ltd., India	2-30	Serum/Plasma/Whole blood	days/-20 for longer storage	20ul	20 minutes	NR	NR	IgM/IgG antibodies to SARS-CoV-2
	(Formosa Biomedical						10		
		Technology		Nasopharyngeal/Oropharyn	Up to 1 hour at room temperature/4			copies/reactio		
8.	SARS-COV-2 Ag rapid Test Kit	Corp.,Taiwan	NR	geal swab	hours at 2-8	NR	10-15 minutes	n	NR	NR
	BIOCREDIT SARS-COV-2									
9.	(Differential black gold conjugate	Ranigen Inc. South		Nasopharynx/Nasopharynge	Up to 1 hour at room temperature/4					
	technology)	Korea	1-40	al swab	hours at 2-8	90-150 µl	5-8 minutes	90.20%	98-100%	NR
						Serum/Plasma -				
10	Camtech COVID-19 IgM/IgG	Camtech Diagnostics,	2 20		Serum can be stored up to 2-8 for 5	10µl; Whole blood -	15 20	07.5.1000	1000/	Limited to qualitative detection of
10.	Rapid Test Kit	Singapore Maril Diagnostias But	2-30	Serum/Plasma/Whole blood	days/-20 for longer storage	20µ1	15-30 minutes	87.5-100%	100%	IgM/IgG antibodies to SARS-CoV-2
11.	Rapid Test	Ltd., India	NR	blood/Venous whole blood	days/-20 for longer storage	10 ul	20 minutes	97.20%	99.22%	detection of IgM/IgG antibodies
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Specimen with extremely high
	ANGCARD COVID-19 IgG/IgM	Angstrom Biotech Pvt.			Serum can be stored up to 2-8 for 5					concentrations of red blood cells, fibrin
12.	Rapid Test Cassette	Ltd., India	4-30	Serum/Plasma/Whole blood	days/-20 for longer storage	25 µL	15-20 minutes	97.40%	99.30%	should be re-centrifuged before use
	Is It Covid 10 IgM/IgG Papid	M/s Medsource Ozone Biomedicals Put Ltd			Sarum can be stored up to 2.8 for 5					Limited to qualitative detection of IgG/IgM antibodies to SAPS CoV 2
13.	Diagnostic Test	India	NR	Serum/Plasma/Whole blood	days/-20 for longer storage	NR	NR	NR	NR	Igo/Igivi antibodies to SARS-Cov-2
								IgM - 40.0%,		
								IgG - 56.7%;		
14		GenBody Inc., South	2 20	Nasopharyngeal swab and	Up to 24 hours at 2-8 / -20 for	100 1	15.20	LoD - 2.87 x	IgM - 98.8%, IgG	
14.	COPONA ANTIBODY	Korea Oscar Medicare Put I td	2-30	oropharyngeal swab	longer periods	~ 100 µl	15-20 minutes	10" TCID ₅₀ /ml	- 100%	Cross-reactive with SARS-CoV-1
15.	DETECTION TEST	India	2-30	Serum/Plasma/Whole blood	davs/-20 for longer storage	NR	5-20 minutes	97.66%	99%	antibodies to SARS-CoV-2
				l	, , , , , , , , , , , , , , , , , , ,	Serum/Plasma -				
						10µl;				
	P 1: TH COMP 10 I CZ M	Abbott Rapid		Serum/Plasma/Fingerstick		Fingerstick/Venipun				
16	Panbio [™] COVID-19 IgG/IgM Rapid Test Device	Diagnostics Division,	2-30	whole blood/venous whole	Serum can be stored up to 2-8 for 5 days/20 for longer storage	cture whole blood -	10 minutes	95 80%	94.00%	Limited to qualitative detection of IgG/IgM antibodies to SARS-CoV-2
10.	implu rost Derice	Children	2 30	0.004	any 20 for longer storage	-oµ1	10 minutes	/0.00/0	2 1.0070	150, 1511 milloones to Britts-Co v-2

CREST (Cas-13, Rugged, Equitable, Scalable testing) approach has been proposed by Rauch et a (79)l, which uses portable thermocyclers and LED visualizers (plastic filterbased) for detection, and the results can be uploaded and stored using smartphones, increasing their feasibility.

IMMUNODIAGNOSTIC ASSAYS: Immunodiagnostic

assays, both antigen and antibody detection tests can be an essential supplement to RNA detection by rRT-PCR during the course of the disease. Combining RNA and antibody detections may significantly improve the sensitivity of diagnosis for COVID-19 patients (34). Total antibody is found to be more sensitive after 12-15 days of onset in patients confirmed with COVID-19 compared to IgM and IgG; whereas RNA is found to decrease from day 7 to day 15 or day 39.One of the challenging factors to overcome while developing serological assays is cross-reactivity to other corona viruses (48,80,81). Immunoassays that can detect antigens and antibodies have higher resistance to disintegration during collection, storage, and transportation compared to viral RNA, making these assays more reliable and feasible (20). A study performed using chemiluminescent immunoassay to detect IgG and IgM, indicated that there might be an association between time and speed of IgM production with severity of illness, as patients with mild symptoms showed specific antibodies 7days PSO, while patients with severe symptoms showed antibodies 12 days PSO (3). Study results of Liu et al (82) have confirmed that recombinant spike protein (rS) based ELISA showed a superior sensitivity in detection of IgM antibodies. Another study performed with ELISA and ICA/LFIA (Immunochromatographic assay/Lateral flow immunoassay) have found the sensitivities of both assays to be individually higher compared to qPCR (quantitative PCR) results on the same study population. LFIA dependent tests have shown to perform uniformly with venous blood, fingerstick blood and plasma with 88.6% specificity (83). The false negative results (challenge faced) produced may be due to variation in the immune response of different individuals.Immunoassays mostly used S1 subunit, N and RBD proteins as targets, among which RBD and N protein-based assays were comparatively more sensitive in patients with milder symptoms (2,84). RDT (Rapid diagnostic tests) for detection of IgM and IgG reports suggest that IgG has better chance of detection with prolonged time period, PSO. Sensitivity and specificity of the immunological assays are considered imperative factors in the practical application of these methods (85,86).

ELISA assays have been improvised/modified in different studies which have results in successful increase in accuracy, sensitivity and validity of the assays (2). Combining ELISA with RT-PCR (Detection of both RNA and antibodies) have also shown increased sensitivities of up to 99.4% compared to 67.1% when performed in the absence of ELISA (2,87,88). Antibodies to N protein was found to decrease very early, thus is recommended to test for both S & N protein. High specificity is given by S protein as SARS-CoV-2 exhibits novel epitopes. ELSIA was reported to have 96% sensitivity to N protein for 15-30 days PSO. LFIA was demonstrated to have 57% clinical sensitivity, 100% specificity, and 69% accuracy for IgM and 81% sensitivity, 100% specificity, and 86% accuracy for IgG, respectively, whereas a test that detects both IgM and IgG has a sensitivity of 82% (2,3,83,84,88,89). COVID KAVACH Anti-SARS CoV-2 Human IgG ELISA, KAWACH IGG MICROLISA, COVID and ELISafe 19TM antibody test kits are among the few ELISA tests approved by ICMR for diagnosis of SARS-CoV-2. BIOCARD Pro COVID-19 Rapid Antigen kit, STANDARDTM Q COVID-19 Ag Test, BIOCREDIT SARS-COV-2 ANTIGEN RAPID TEST CE IVD (Differential black gold conjugate technology) are among the few rapid detection tests (RDTs) approved by ICMR for Covid-19 diagnosis.

NON-MICROBIOLOGICAL INVESTIGATIONS

RADIOLOGICAL DIAGNOSIS: The false negative results in rRT-PCR has highlighted the importance of other diagnostic techniques and management criteria. CT-scan (Computed Tomography-scan) is a rapid, practical diagnostic tool, with high sensitivity, which can be used to follow-up patients before PCR tests turn negative. Studies have reported a higher sensitivity for CT-scans compared to PCR due to misdiagnosis and false negative results (10,40).But some of the major challenges faced are low specificity (25%), financial input, and requirement of technical expertise (1,58,80). COVID-19 pneumonia CT findings are ground glass opacity (GGO), fine reticular opacity, reverse halo sign, vascular thickening (20,21).According to most studies, GGO is the most predominant sign in symptomatic COVID-19 patients (2,10,20,21). Chest CT abnormalities have been detected in patient prior to PCR detected in endemic areas (20). About 75% of RT-PCR negative patients had positive chest CT findings. Although the specificity is found to be low 25% due to other related aetiologies causing similar CT findings, sensitivity 97% and accuracy 68% have found to be higher compared to PCR. many studies report a need for repetition of rRT-PCR for avoiding misdiagnosis (21,90,91). CXR (Chest radiography) is another suggested tool to decrease cross contamination by CT suites, while a retrospective study reports a low sensitivity of CXR 69% compared to PCR 91% and CT 97% (21). Further evidence is needed to validate the diagnostic technique. The features depend on stage of infection PSO. CT scans were more frequent in early stages of the disease (0-2days) with maximum lung involvement 10 days PSO (10). Some of the major challenges faced are low specificity (25%), financial input, and requirement of technical expertise (1,58,80).

CONCLUSION

The pandemic caused by SARS-CoV-2 is a new disease; thus, exploring of all opportunities is crucial to find the most effective means of diagnosis, and strategies to prevention and treat the increasing number of cases. New technologies, including molecular techniques, immunodiagnostic assays, POCTs, and radiology techniques have been developed as a benefit of these efforts, also including artificial intelligence, nanotechnology, and biosensors for clinical applications. Rapid TAT and feasibility are some of the major objectives for newer assays being developed. Stringent measures of prevention and detection should be followed which could help improving the detect ability of the virus. Most importantly, the combination of clinical presentation of patients, clear patient history, physical examination of patients, radiological diagnosis with appropriate laboratory tests are still the most potent arsenal against the disease.

Conflict of Interest: None of the author declare conflict of interest

Funding statement: No funding received.

GLOSSARY OF ABBREVIATIONS:

SARS Covid-	Severe Acute Respiratory Syndrome
19	Corona VIrus Disease-2019
SARS-CoV-2	Severe Acute Respiratory Syndrome-
	Corona Virus-2
rRT-PCR	Real-time Reverse Transcription-
	Polymerase Chain Reaction
TAT	Turn Around Time
NAATs	Nucleic Acid Amplification Tests
СТ	Computed Tomography
RT-LAMP	Reverse-Transcriptase loop-mediated
DOOT	isotheral amplification assay
POCTS	Point-of-Care tests
CRISPR	Clustered Regularly Interspaced Short
A T	A stificial Intelligences
	Artificial Intelligence
KNA DdDn	RIDO NUCIEIC ACIO
какр	RNA dependent RNA polymerase
SS	Angiotensin Converting Engume 2
ACE-2	Aligiotensin Converting Enzyme – 2
SARS COV	Severe Acute Despiratory Syndrome
5413-001	Corona Virus
MERS-CoV	Middle-East Respiratory
MILIND-CUV	Syndrome-Corona Virus
IøG	Immunoglobulin G
IgM	Immunoglobulin M
MDA	Molecular Diagnostic Assays
NASBA	Nuclei Acid
i (i lobi i	Sequence-Based Amplification
LAMP	Loop-mediated
	isothermal AMPlification
PCR	Polymerase Chain Reaction
PSR	Polymerase Spiral Reaction
HAD	Helicase Dependent Amplification
TMA	Transcription Mediated Amplification
BAL	Bronchoalveolar Lavage
PSO	Post Symptom Onset
VTM	Viral Transport Medium
PBS	Phosphate Buffered Saline
BSC II	Bio-Safety Cabinet class II
CDC	Centers for Disease Control
	and Prevention
WHO	World Health Organisation
Ct	Cycle threshold
ICMR	Indian Council of Medical Research
qPCR	Quantitative polymerase chain reaction
1LACO	Isothermal LAMP based method
DIGLOUT	for COvid-19
INSIGHT	Isothermal NASBA-Sequencing
DNA	Desymptic Nucleic A -: -!
DINA	DEUXYIIDOINUCIEIC ACId
DETECTK	Trans Reporter
STOP	SHERI OCK Testing in One Pot
HUDSON	Heating Un-extracted Diagnostic
11005011	Samples to Obliterate Nucleases
AIOD-CRISPR	All-In-One Dual Clustered
THOP CRISER	Regularly Interspaced
	Short Palindromic Sequences
RPA	Recombinase Polymerase Amplification
CRISPR-nCoV	Clustered Regularly Interspaced Short
	Palindromic Sequences-novel COrona
	Virus
CREST	
CILDI	Cas-13, Rugged Equitable, Scalable
CREST	Cas-13, Rugged Equitable, Scalable Testing
LED	Cas-13, Rugged Equitable, Scalable Testing Light Emitting Diode

ELISA	Enzyme-Linked ImmunoSorbent Assay
ICA	Immuno Chromatographic Assay
LFIA	Lateral Flow Immuno Assay
RDT	Rapid Diagnostic tests
GGO	Ground Glass Opacity
CXR	Chest radiography

REFERENCES

- 1. Caruana G, Croxatto A, Coste AT, Opota O, Lamoth F, Jaton K, Greub G. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clinical Microbiology and Infection. 2020 Jun 25.
- 2. Sheikhzadeh E, Eissa S, Ismail A, Zourob M. Diagnostic techniques for COVID-19 and new developments. Talanta. 2020 Jul 14:121392.
- Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VY, Chen H, Mubareka S, Gubbay JB, Chan WC. Diagnosing COVID-19: the disease and tools for detection. ACS nano. 2020 Mar 30;14 (4):3822-35.
- 4. Sharma P, Tripathi S, Patel SK, Dhama K, Chandra R. SARS-CoV-2/COVID-19 and its Transmission. Prevention, Treatment and Control–An Update, J. Pure Appl. Microbiol. 2020 May;14.
- Ahamad S, Kanipakam H, Gupta D. Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding. Journal of Biomolecular Structure and Dynamics. 2020 Aug 26:1-3.
- 6. <u>www.who.int</u>
- 7. Vivanti A, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, Benachi A, De Luca D. Transplacental transmission of SARS-CoV-2 infection.
- Shende P, Gaikwad P, Gandhewar M, Ukey P, Bhide A, Patel V, Bhagat S, Bhor V, Mahale S, Gajbhiye R, Modi D. Persistence of SARS-CoV-2 in the first trimester placenta leading to vertical transmission and fetal demise from an asymptomatic mother. MedRxiv. 2020 Jan 1.
- 9. Kotlyar A, Grechukhina O, Chen A, Popkhadze S, Grimshaw A, Tal O, Taylor HS, Tal R. Vertical transmission of COVID-19: a systematic review and meta-analysis. American journal of obstetrics and gynecology. 2020 Jul 31.
- Xu G, Yang Y, Du Y, Peng F, Hu P, Wang R, Yin M, Li T, Tu L, Sun J, Jiang T. Clinical Pathway for Early Diagnosis of COVID-19: Updates from Experience to Evidence-Based Practice. Clinical Reviews in Allergy & Immunology. 2020 Apr 24:1-2.
- 11. Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, Scarlata S, Agrò FE. COVID 19 diagnosis and management: a comprehensive review. Journal of Internal Medicine. 2020 Apr 29.
- 12. Marimuthu S, Joy M, Malavika B, Nadaraj A, Asirvatham ES, Jeyaseelan L. Modelling of reproduction number for COVID-19 in India and high incidence states. Clinical Epidemiology and Global Health. 2020 Jun 30.
- 13. Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. International journal of antimicrobial agents. 2020 Mar 28:105955.
- 14. www.cdc.gov/2019-ncov/hcp
- 15. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GV, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step

in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004 Jun;203 (2):631-7.

- Ahamad S, Kanipakam H, Gupta D. Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding. Journal of Biomolecular Structure and Dynamics. 2020 Aug 26:1-3.
- 17. Ghosh A, Colling R. An overview of COVID-19 for diagnostic pathologists: clinicopathological correlation and diagnostic techniques. Diagnostic Histopathology. 2020 Jun 8.
- 18. Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. Jama. 2020 May 20.
- Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, Sasso JM, Gregg AC, Soares DJ, Beskid TR, Jervey SR. Assay techniques and test development for COVID-19 diagnosis.
- 20. Abduljalil JM. Laboratory diagnosis of SARS-CoV-2: available approaches and limitations. New microbes and new infections. 2020 Jun 14:100713.
- 21. Alsuliman T, Sulaiman R, Ismail S, Srour M, Alrstom A. COVID-19 paraclinical diagnostic tools: Updates and future trends. Current Research in Translational Medicine. 2020 Jun 20.
- 22. https://apps.who.int/iris/handle/10665/333912
- 23. https://www.icmr.gov.in/pdf/covid/strategy/Testing_Strat egy_v6_04092020.pdf
- 24. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinicalguidance-managementpatients.html#:~:text=The%20signs%20and%20symptom s%20of,of%20breath%20or%20difficulty%20breathing
- https://www.mohfw.gov.in/pdf/ClinicalManagementProto colforCOVID19.pdf
- Sharma P, Tripathi S, Patel SK, Dhama K, Chandra R. SARS-CoV-2 / COVID-19 and its Transmission, Prevention, Treatment and Control - An Update. J Pure Appl Microbiol. 2020;14 (suppl 1):945-956. doi: 10.22207/JPAM.14.SPL1.32
- Han Y, Yang H. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID 19): A Chinese perspective. Journal of medical virology. 2020 Jun;92 (6):639-44.
- Tahmasebi S, Khosh E, Esmaeilzadeh A. The outlook for diagnostic purposes of the 2019 novel coronavirus disease. Journal of Cellular Physiology. 2020 May 26.
- 29. Tahmasebi S, Khosh E, Esmaeilzadeh A. The outlook for diagnostic purposes of the 2019 novel coronavirus disease. Journal of Cellular Physiology. 2020 May 26.
- Konwarh R. Can CRISPR/Cas technology be a felicitous stratagem against the COVID-19 fiasco? Prospects and hitches. Frontiers in Molecular Biosciences. 2020 Sep 10;7:244.
- Chauhan N, Soni S, Gupta A, Jain U. New and developing diagnostic platforms for COVID-19: a systematic review. Expert review of molecular diagnostics. 2020 Sep 1.
- 32. Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang ML, Kim NG, Yu X, Li J, Walker BD, Greninger AL. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv. 2020 Jan 1.
- Bhatia R, Chaudhary R, Khurana SK, Tiwari R, Dhama K, Gupta VK, Singh RK, Natesan S. Strengthening of molecular diagnosis of SARS-CoV-2/COVID-19 with a

special focus on India. J Pure Appl Microbiol. 2020 May 14;14 (suppl 1):789-98.

- Carinci F, Moreo G, Limongelli L, Testori T, Lauritano D. Diagnostic performance of serological assays in the detection of SARS-CoV-2: A review. Applied Sciences. 2020 Jan;10 (13):4506.
- Pan Y, Li X, Yang G, Fan J, Tang Y, Zhao J, Long X, Guo S, Zhao Z, Liu Y, Hu H. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. Journal of Infection. 2020 Apr 10.
- Esbin MN, Whitney ON, Chong S, Maurer A, Darzacq X, Tjian R. Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection. RNA. 2020 May 1:rna-076232.
- Böger B, Fachi MM, Vilhena RO, de Fátima Cobre A, Tonin FS, Pontarolo R. Systematic review with metaanalysis of the accuracy of diagnostic tests for COVID-19. American journal of infection control. 2020 Jul 10.
- Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. (2020): 453-454.
- 39. West CP, Montori VM, Sampathkumar P. COVID-19 testing: the threat of false-negative results. InMayo Clinic Proceedings 2020 Jun 1 (Vol. 95, No. 6, pp. 1127-1129). Elsevier.
- Long C, Xu H, Shen Q, Zhang X, Fan B, Wang C, Zeng B, Li Z, Li X, Li H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?. European journal of radiology. 2020 Mar 25:108961.
- Li Y, Yao L, Li J, Chen L, Song Y, Cai Z, Yang C. Stability issues of RT PCR testing of SARS CoV 2 for hospitalized patients clinically diagnosed with COVID 19. Journal of medical virology. 2020 Mar 26.
- 42. Temesgen A Gelaw, Global Risk, Diagnosis and Treatment of Coronavirus Disease (COVID-19): The Pandemic. J Med Biol 2 (2): 54-64. ©
- Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. Jama. 2020 May 12;323 (18):1843-4.
- 44. Abduljalil JM. Laboratory diagnosis of SARS-CoV-2: available approaches and limitations. New microbes and new infections. 2020 Jun 14:100713.
- 45. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang YY, Xiao GF, Yan B, Shi ZL, Zhou P. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging microbes & infections. 2020 Jan 1;9 (1):386-9.
- Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus–infected pneumonia. Journal of medical virology. 2020 Jun;92 (6):680-2.
- Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020 May;581 (7809):465-9.
- 48. Kubina R, Dziedzic A. Molecular and serological tests for COVID-19 a comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics. Diagnostics. 2020 Jun;10 (6):434.
- 49. Liu J, Xiao Y, Shen Y, Shi C, Chen Y, Shi P, Gao Y, Wang Y, Lu B. Detection of SARS CoV 2 by RT PCR in anal from patients who have recovered from coronavirus disease 2019. Journal of Medical Virology. 2020 Apr 14.
- 50. Jiang X, Luo M, Zou Z, Wang X, Chen C, Qiu J. Asymptomatic SARS CoV 2 infected case with viral

detection positive in stool but negative in nasopharyngeal samples lasts for 42 days. Journal of medical virology. 2020 Apr 24.

- 51. Wong MC, Huang J, Lai C, Ng R, Chan FK, Chan PK. Detection of SARS-CoV-2 RNA in fecal specimens of patients with confirmed COVID-19: a meta-analysis. Journal of Infection. 2020 Jun 11.
- 52. Azzi L, Carcano G, Gianfagna F, Grossi P, Dalla Gasperina D, Genoni A, Fasano M, Sessa F, Tettamanti L, Carinci F, Maurino V. Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection. 2020 Apr 14.
- Sabino-Silva R, Jardim AC, Siqueira WL. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clinical Oral Investigations. 2020 Apr;24 (4):1619-21.
- 54. Azzi L, Baj A, Alberio T, Lualdi M, Veronesi G, Carcano G, Ageno W, Gambarini C, Maffioli L, Di Saverio S, Dalla Gasperina D. Rapid Salivary Test suitable for a mass screening program to detect SARS-CoV-2: A diagnostic accuracy study. The Journal of infection. 2020 Sep 1.
- 55. Ward S, Lindsley A, Courter J, Assa'ad A. Clinical testing for COVID-19. The Journal of Allergy and Clinical Microbiology. 2020 May 19.
- 56. Yelin I, Aharony N, Shaer-Tamar E, Argoetti A, Messer E, Berenbaum D, Shafran E, Kuzli A, Gandali N, Hashimshony T, Mandel-Gutfreund Y. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. MedRxiv. 2020 Jan 1.
- Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections-the state of the art. Emerging microbes & infections. 2020 Jan 1;9 (1):747-56.
- Hanson KE, Caliendo AM, Arias CA, Englund JA, Lee MJ, Loeb M, Patel R, El Alayli A, Kalot MA, Falck-Ytter Y, Lavergne V. Infectious Diseases Society of America guidelines on the diagnosis of COVID-19. Clinical Infectious Diseases. 2020 Jun 16.
- 59. Radbel J, Jagpal S, Roy J, Brooks A, Tischfield J, Sheldon M, Bixby C, Witt D, Gennaro ML, Horton DB, Barrett ES. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is comparable in clinical samples preserved in saline or viral transport medium. The Journal of Molecular Diagnostics. 2020 Jul 1;22 (7):871-5.
- Augustine R, Hasan A, Das S, Ahmed R, Mori Y, Notomi T, Kevadiya BD, S Thakor A. Loop-mediated isothermal amplification (Lamp): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of covid-19 pandemic. Biology. 2020 Aug;9 (8):182.
- 61. Colton H, Ankcorn M, Yavuz M, Tovey L, Cope A, Raza M, Keeley AJ, State A, Poller B, Parker M, de Silva TI. Improved sensitivity using a dual target, E and RdRp assay for the diagnosis of SARS-CoV-2 infection: Experience at a large NHS Foundation Trust in the UK. The Journal of Infection. 2020 May 28.
- 62. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou Z, Tsoi HW, Choi GK. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. Journal of Clinical Microbiology. 2020 Apr 23;58 (5).

- 63. Liu J, Xiao Y, Shen Y, Shi C, Chen Y, Shi P, Gao Y, Wang Y, Lu B. Detection of SARS CoV 2 by RT PCR in anal from patients who have recovered from coronavirus disease 2019. Journal of Medical Virology. 2020 Apr 14.
- 64. Wang M, Fu A, Hu B, Tong Y, Liu R, Liu Z, Gu J, Xiang B, Liu J, Jiang W, Shen G. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS CoV 2 and other respiratory viruses. Small. 2020 Aug;16 (32):2002169.
- 65. Emery SL, Erdman DD, Bowen MD et al (2004) Realtime reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg Infect Dis 10:311–316
- 66. Perng CL, Jian MJ, Chang CK, Lin JC, Yeh KM, Chen CW, Chiu SK, Chung HY, Wang YH, Liao SJ, Li SY. Novel rapid identification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by real-time RT-PCR using BD Max Open System in Taiwan. PeerJ. 2020 Jun 17;8:e9318.
- 67. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. Jama. 2020 May 6.
- 68. Wang WK, Chen SY, Liu IJ, Chen YC, Chen HL, Yang CF, Chen PJ, Yeh SH, Kao CL, Huang LM, Hsueh PR, Wang JT, Sheng WH, Fang CT, Hung CC, Hsieh SM, Su CP, Chiang WC, Yang JY, Lin JH, Hsieh SC, Hu HP, Chiang YP, Wang JT, Yang PC, Chang SC; SARS Research Group of the National Taiwan University/National Taiwan University Hospital. 2004. Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis. Emerg Infect Dis 10:1213–1219.
- Li Y, Yao L, Li J, Chen L, Song Y, Cai Z, Yang C. Stability issues of RT PCR testing of SARS CoV 2 for hospitalized patients clinically diagnosed with COVID 19. Journal of medical virology. 2020 Mar 26.
- 70. https://www.icmr.gov.in/pdf/covid/techdoc/Advisory_on _correlation_of_COVID_severity_with_Ct_values.pdf
- Li Y, Yao L, Li J, Chen L, Song Y, Cai Z, Yang C. Stability issues of RT PCR testing of SARS CoV 2 for hospitalized patients clinically diagnosed with COVID 19. Journal of medical virology. 2020 Mar 26.
- Bustin SA, Nolan T. RT-qPCR testing of SARS-CoV-2: a primer. International Journal of Molecular Sciences. 2020 Jan;21 (8):3004.
- 73. Kubina R, Dziedzic A. Molecular and serological tests for COVID-19 a comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics. Diagnostics. 2020 Jun;10 (6):434.
- Zhang Y, Odiwuor N, Xiong J, Sun L, Nyaruaba RO, Wei H, Tanner NA. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. MedRxiv. 2020 Jan 1.
- 75. Gayathri S, Mounika SP, Banu K, Rai B, Mondal B. Relevance of rapid, reliable and low-cost diagnostics in the current COVID-19 pandemic. Glob J Clin Virol. 2020;5 (1):001-9.
- 76. Yu L, Wu S, Hao X, Li X, Liu X, Ye S, Han H, Dong X, Li X, Li J, Liu J. Rapid colorimetric detection of COVID-19 coronavirus using a reverse tran-scriptional loopmediated isothermal amplification (RT-LAMP) diagnostic plat-form: iLACO. medRxiv. 2020 Jan 1.
- 77. Wu Q, Suo C, Brown T, Wang T, Teichmann SA, Bassett AR. INSIGHT: a scalable isothermal NASBA-based platform for COVID-19 diagnosis. bioRxiv. 2020 Jan 1.

- Huang Z, Tian D, Liu Y, Lin Z, Lyon C, Lai W, Fusco D, Drouin A, Yin X, Hu T, Ning B. Ultra-sensitive and highthroughput CRISPR-Powered COVID-19 diagnosis. Biosensors and Bioelectronics. 2020 May 23:112316.
- 79. A scalable, easy-to-deploy, protocol for Cas13-based detection of SARS-CoV-2 genetic material.
- Sanyaolu A, Okorie C, Marinkovic A, et al. Navigating the Diagnostics of COVID-19. SN Compr Clin Med. 2020:1-8
- Nuccetelli M, Pieri M, Grelli S, Ciotti M, Miano R, Andreoni M, Bernardini S. SARS-CoV-2 infection serology: a useful tool to overcome lockdown?. Cell Death Discovery. 2020 May 26;6 (1):1-9.
- 82. Beeching NJ, Fletcher TE, Beadsworth MB. Covid-19: testing times.2020
- 83. Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W, Zhang Y. Development and clinical application of a rapid IgM IgG combined antibody test for SARS CoV 2 infection diagnosis. Journal of medical virology. 2020 Feb 27.
- 84. Chaudhuri S, Thiruvengadam R, Chattopadhyay S, Mehdi F, Kshetrapal P, Shrivastava T, Desiraju BK, Batra G, Kang G, Bhatnagar S, for COVID DI. Comparative evaluation of SARS-CoV-2 IgG assays in India. Journal of Clinical Virology. 2020 Oct 1;131:104609.
- 85. Vashist SK. In vitro diagnostic assays for COVID-19: recent advances and emerging trends. 2020; 202

- 86. La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reproductive biomedicine online. 2020 Jun 14.
- 87. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, Zhang L. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical Infectious Diseases. 2020 Mar 21.
- 88. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J, Qian S. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clinical Infectious Diseases. 2020 Jan 1.
- Bohn MK, Lippi G, Horvath A, Sethi S, Koch D, Ferrari M, Wang CB, Mancini N, Steele S, Adeli K. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence. Clinical Chemistry and Laboratory Medicine (CCLM). 2020 May 27;1 (ahead-of-print).
- Yang W, Yan F. Patients with RT-PCR-confirmed COVID-19 and normal chest CT. Radiology. 2020 May;295 (2):E3-.
- 91. Sinha N, Balayla G. Sequential battery of COVID-19 testing to maximize negative predictive value before surgeries. Revista do Colégio Brasileiro de Cirurgiões. 2020;47..
