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INTRODUCTION 
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conducted by Anna Klimovskaia, Manfred Claassen & Stefan Ganscha (2016) used time series to study the single cell structure function 
Stochastic reaction networks and Sparse Regression. Apart from this Adam M. Sykulski, Sofia C. Olhede, Jonathan M. Lilly & Er
(2015) proposed time series models are used to summarize large multivariate datasets and infer important physical parameters 
oscillations and other ocean processes. Bhalla N and Rakesh S (2018) analyzed the crude oil data using ARIMA
Non stationary time series methods are employed to account for the spatiotemporal variability of each trajectory. Here we con
comprehensive approach of Time series modelling with a special reference to Oil data.
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ABSTRACT 

This research model explored different time series modelling approach over Crude oil prices.  In time 
series analysis, we assume that the current price of crude oil reflects the effect of all the influencing 
factors. So that the price forecasting of the crude oil can be done using the past crude oil prices. The 
main assumption in this time series modeling is that the past crude oil prices can be used to predict the 
future crude oil price. Although the time series analysis can find the trend, there will be limitations to 
the forecasting capability of the model that we use in the analysis when the reversal in
observed in the data taken or the pattern repeated may not be followed by the future prices. Different 
types of trend patterns such as increasing trend, decreasing trend or periodic patterns can be obtained. 
Time series analysis is more useful and will give better forecasting only when the data follows any of 
these trends. In this work, data analysis on crude oil data set is performed. A novel time
forecasting approach based on Auto-Regressive Integrated Moving Average (ARIMA) model, 
Seasonal Auto-Regressive Moving Average (SARIMA), ARCH (Auto Regressive Conditional 
Heteroscedasticity) model, GARCH (Generalized Auto Regressive Conditional Heteroscedasticity) 
are also proposed using the R programming language for  statistical computing and gr
results will help the researchers from various community to gauge the trend and improvise 
containment strategies accordingly. 
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Concepts and Methods 
 
Time series modeling techniques:  Several time series techniques are proposed to build a time series. They include AR (Auto Regressive) 
model, MA (Moving Average) model, ARMA (Auto Regressive Moving Average) model, ARCH (Auto Regressive Conditional 
Heteroscedasticity) model, GARCH (Generalized Auto Regressive Conditional Heteroscedasticity), ARIMA (Auto Regressive Integrated 
Moving Average) model, SARIMA (Seasonal Auto Regressive Integrated Moving Average), Holt- Winter’s Exponential Smoothing. Various 
hybrid models are also suggested as a combination of two models with support vector regression, genetic algorithms and wavelets. We have used 
ARIMA and other methods for modeling the crude oil prices since these models covers both linear and non- linear time series modeling.    
 
 
ARIMA Modelling:  Most of the time series are non- stationary model so we make differencing of feasible order to get into a stationary model. 
Thus we have a model capable of describing certain types of non- stationary series, called an Integrated model. Thus, an ARIMA(p,d,q) process 
can be defined and it consist of 3 parts: AR component which is a linear combination of the previous values, MA  component is the linear 
combination of past error terms and I ( Integrated) replaces the original series with the differenced series.  To build an ARIMA model, we use the 
ADF (Augmented Dickey- Fuller) test in order to test the stationarity of the given time series. The proper orders of p and q for the model can be 
obtained by plotting the SACF (Sample Auto- Correlation Function) and SPACF (Sample Partial Auto-Correlation Function).  A time series plot 
of Price of the crude oil appears in Figure 1. Here we can see that the price rises and falls through the time and it is clear that data exhibit high 
level of volatility during the period of analysis.  

 
Figure 1. Time series plot of crude oil price from  March 1983 to  November 2023 

 
The time series plot shows that there is a small increase in variance and an upward trend in the data. Also, it is clear that the prices arise and falls 
through time, so its mean may not be stationary. 
 
Normality test- To check the normality of our data we use both graphically by constructing the Histogram & Q-Q plot and statistically by 
Shapiro- Wilk test. 

 
 

Figure 2. Histogram of crude oil price.                                                  Figure 3. Q-Q plot of crude oil price. 
 

 
From the figure 2 & 3 it is clear that our data is not normally distributed. 
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Shapiro- Wilk normality test 
 
Data is normally distributed. Vs : Data is not normally distributed.  
 
Shapiro-Wilk normality test 
 
data:  Price 
W = 0.88391, p-value < 2.2e-16 
The p value in the Shapiro- Wilk normality test is less than 0.05. Hence, we reject the null hypothesis. Hence, we can conclude that our data is 
not normal. Now we decompose the time series into its components to evaluate. 
 

 
Figure 4. Decompose plot of additive time series. 

 
 
This plot shows the decomposed components of the time series. It consists of three components; Trend, Seasonality and Residuals.  
 
Stationarity: From our time series plot, we analyze that our data is non- stationary and it contains the trend and seasonal component. In order to 
make this assumption more specific we construct the ACF, PACF plot and Dickey- Fuller test. 

 
 

                                Figure 5. ACF of monthly crude oil price.                                    Figure 6. PACF of monthly crude oil price. 
 

From the above two figures, it is clear that the data is not stationary. Similarly, the stationarity of the time series can be tested using Augmented 
Dickey- Fuller test. The hypothesis is as follows.  The time series is non- stationary Vs. The time series is stationary. 
Augmented Dickey-Fuller Test 
 
data:  Price 
 
Dickey-Fuller = -2.8592, Lag order = 7, p-value = 0.2146 alternative hypothesis: stationary 
It is clear that p value is greater than 0.05. Hence, we accept the null hypothesis. So that our time series data is non- stationary. 
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The plot of PACF shows a non- constant mean and variance. Using differencing, and because of non- constant variance, we work with the log 
returns of our data. The log returns approach is considered as 
 
Where,  represents the price of crude oil and  is its differenced series. 
 

 
Figure 7. Time series plot of log differenced data. 

 
From the time series plot of log differenced data, it is clear that after applying the transformation, the trend and seasonality is removed. Also, our 
data becomes stationary in mean. But our is not constant in variance. Hence, the further analysis can be done with the help of ARIMA, ARCH 
and GARCH. In order to substantiate that the transformed data is stationary, we use the unit root test which include  Augmented Dickey- Fuller 
test (ADF), Phillips-Perron test and Kwiatkowski- Phillips- Schmidt- Shin (KPSS)  test. 
 
 The time series is non- stationary and has a trend component which cannot be removed bydifferencing the data Vs.  The time series is stationary. 
 Augmented Dickey-Fuller Test 
 
Augmented Dickey-Fuller Test 
 
data:  data_1 
 
Dickey-Fuller = -8.8557, Lag order = 7, p-value = 0.01 
alternative hypothesis: stationary 
 
From the ADF test, we can see that the p value is less than 0.05. Thus, we reject the null hypothesis. Hence, our time series with log difference is 
a stationary process. 
 
Phillips-Perron Unit Root Test 
 
data:  data_1 
 
Dickey-Fuller Z(alpha) = -361.51, Truncation lag parameter = 5, p-value = 0.01 
 
alternative hypothesis: stationary 
 
Here, the Dickey- Fuller statistic has a negative value which shows strong evidence against our null hypothesis and suggest that our log 
differenced time series is stationary. The truncated lag parameter of 5 indicates that PP test consider up to lag 5 of the Auto Regressive parameter 
in estimating our model. Also, it shows there is no serial correlation and heteroskedasticity in our model and since the p- value is 0.01 which 
indicates that our time series is stationary. 
 
KPSS Test for Level Stationarity data:  data_1 
 
KPSS Level = 0.050875, Truncation lag parameter = 5, p-value = 0.1 
 
In KPSS (Kwiatkowski- Phillips- Schmidt- Shin), the p- value is greater than 0.05. Hence, we accept the null hypothesis that our data is 
stationary.  
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Figure 8. Histogram of data_1                                           Figure 9. QQ plot of data_1 
 

Since, after transforming our data by applying the log differencing, the data becomes stationary. Now, we will check the normality of 
transformed data using Histogram and Q-Q Plot. 
 
Histogram and Normal Q-Q plot shows that the data is normally distributed.  Data testing and training are of paramount in time series analysis 
for several reasons. Testing and training data allows us to assess the performance of our time series model. By comparing model predictions with 
the actual values in testing dataset, we can measure how well our model generalizes to unseen data. This evaluation is crucial for understanding 
the model effectiveness in making the future forecast. The time series model needs to capture underlying patterns and trends in the data. Training 
data helps the model to learn these patterns, while testing data assess its ability to generalize beyond the training set. Ensuring that a model can 
generalize well is essential for making accurate forecast. During model training, we may need to adjust the hyper parameters such as the lag 
order in ARIMA. Testing data are crucial for assessing the impact of different hyper parameter choices and selecting the best configuration for 
optimal forecasting performance. Dividing a dataset into training and testing sets is a fundamental step in machine learning and time series 
analysis. The goal is to separate the data into two distinct subsets: one for training the model and another for evaluating the performance. To 
maintain the temporal order and ensure that the model learns from past data to predict future data, we typically use the sequential splitting 
approach. The dataset is divided into two parts: the training set and testing set. The training set contains the earliest observations in the time 
series data, covering a substantial portion of the historical data. For example, we might use the first 80% of the data as the training set. The 
testing set contains the most recent observations representing a portion of the data that the model has to be seen during training. This portion is 
around 20% of the data but can vary depending on the specific requirements. It’s crucial to consider the temporal aspects when splitting the data. 
The training data should precede the testing data in terms of time. The training data should provide the model with a sufficient historical context 
to learn from past patterns and trends. The testing data should represent a future time period that the model needs to forecast accurately. Dividing 
a time series dataset into training and testing sets involves careful considerations of the temporal order of the data. The goal is to provide a model 
with historical context while ensuring that it can make accurate predictions for future time points. 
 
Since, our data is normally distributed and stationary, we can fit a model.  
 
Box cox lambda value1.275122 
 
While applying the Box- Cox transformation to find the optimal value of lambda, we got the value of lambda as greater than zero so that our 
transformed time series data can be used to build a more accurate model for our underlying process like ARIMA.    
 
arima(x = data_1.train, order = c(1, 1, 2)) 
 
Coefficients: 
          ar1      ma1      ma2 
      -0.0814  -0.7328  -0.2672 
s.e.   0.2420   0.2334   0.2333 
 
sigma^2 estimated as 0.008663:  log likelihood = 406.98,  aic = -805.97 
 
It is clear that the best fitted model is ARIMA(1,1,2) which means that our model has the lag 1 of AR , difference d=1 and MA has residual lag  
 
In fitting ARIMA(p,d,q) model, Thus, our model becomes: 
 
 
 
Where,represents the value of time series at time  represents the value of time series at previous time step ,  is the error term which represents the 
difference between the observed value at time t and the predicted value at time t based on our ARIMA model,  is the error term at the previous 
time step  is the error term at the previous time step The model equation is indicating that the value of the time series at time depends on its value 
at the previous time step and the error terms at the current time step and the previous two time steps and  The coefficients on the error terms (-
0.7328 and -0.2672) indicate that the current value of the error term is negatively correlated with the error terms at the previous time steps, with 
the strength of the correlation decreasing as the time lag increases. The coefficient on the lagged value of the time series (-0.0814) indicates a 
positive correlation between the value of the time series at time t and its value at the previous time step, with a strength of -0.0814. 
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The values of AIC, AICc, BIC are -1.902452, -1.902234, -1.855199 respectively. These less values shows that our model is a good fit for this  
data.  
 
Diagnostic Checking: In order to check whether our ARIMA model is a best fit to the data, we should do the diagnostic checking. ie, we have to 
check the residuals which is very helpful in checking whether the model has adequately captured the complete information from the data. 
 

 
 

Figure 10. The Residual Plot, Histogram, Q-Q  Plot, ACF and PACF of log differenced data. 
 
Figure 10: The Residual Plot, Histogram, Q-Q  Plot, ACF and PACF of log differenced data. From the graph of Residuals it is clear that all the 
points do not cross the control limit lines. Hence, there is no autocorrelation is present in between the residuals. Also, mean is constant for 
residuals at zero. But there exists volatility in the ARIMA model. The ACF and PACF plot shows the correlation of residuals with the previous 
time points and it is not significant. To make it significant by plotting ACF and PACF of Residual square. 
 
Shapiro-Wilk normality test 
data:  arma1.resid 
W = 0.98193, p-value = 3.365e-05 
 
The Q-Q plot of residuals shows that residuals are normally distributed. But in the Shapiro- Wilk test the p value is 3.365e-05 which is less than 
0.05. It shows that the residuals are not normally distributed. Hence, we check the model adequacy by Ljung Box Portmanteau test as follows. 
: The model does not show lack of fit. 
: The model shows lack of fit. 
 

 
 

 
Figure 11. Squared Residual Plot, Histogram, Q-Q Plot, ACF and PACF of log differenced data. 

 
From the figure above, it is clear that there is no AR and MA effect (since the lag is 0 in ACF and PACF plot). But the is volatility still present.  
Since, the residuals vary randomly around zero and the spread of the residuals are not same throughout the plot, we can conclude that the random 
shocks is normally distributed with zero mean and non- constant variance. Hence, it is necessary to fit ARCH and GARCH models. 
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ARCH and GARCH Modeling:  A change in the variance over time can cause problems when modeling a time series data with classical 
methods like ARIMA. An ARCH refers to a type of time series where the conditional variance of the series changes over time. The ARCH 
modeling technique expect that the time series is stationary. To check whether the variance is non- constant and if we could apply ARCH model, 
we analyze the ARCH effect. The hypothesis is given by,  
 
: There is no autocorrelation in the squared residuals of the model(the variance is constant and does not depend only on the past observation) Vs.: 
The variance is conditional on past observation and it is not constant over time.  
 
ARCH LM-test; Null hypothesis: no ARCH effects 
data:  log_price Chi-squared = 95.091df = 12p-value = 5.066e-15 
 
Here, the p- value is less than 0.05. Thus, the null hypothesis is rejected in favour of alternative hypothesis indicating the presence of ARCH 
effect in time series. So that GARCH modeling will be appropriate according to the data. .In other words, the test suggests that the variance of 
the time series data changes over time and is dependent on past values of the series, indicating the presence of conditional heteroscedasticity or 
volatility clustering in the data. This can have implications for modeling and forecasting the time series data. The GARCH model is a statistical 
model which is used to describe the conditional variance of a financial time series. The GARCH model extends the ARCH model by allowing for 
time varying volatility in the conditional variance of time series. This model includes an Auto Regressive term for conditional mean and a 
Moving Average term for conditional variance which is modeled as a function of past squared residuals and past variances. 
 
Coefficient(s): 
 

 
 
The coefficient terms of GARCH model represents the AR and MA terms of the variance equation. Here, the coefficients, a0 represents the 
intercept of GARCH process, a1 represents the coefficient of lagged variance term in GARCH process and b1 represents the coefficient of 
lagged squared of residual term in GARCH equation. The order of GARCH model refers to the number of lagged term and number of lagged 
squared of residual term. Hence we can use the GARCH(1,1) model. 
 
 

GARCH models: Call:garch(x = rprice, grad = "numerical", trace = FALSE) Coefficient(s): 
 
 

 
 
 

Information Criteria 
 
 

Akaike             -1.9528 
Bayes               -1.8659 
Shibata             -1.9537 
Hannan-Quinn -1.9186 
Nyblom stability test: 
Joint Statistic:  2.1025 
 

Individual Statistics 
               

mu         0.14464 
ar1         0.06106 
ar2         0.12995 
ar3         0.13410 
ma1       0.03907 
ma2       0.24519 
ma3       0.10703 
omega   0.46020 
alpha1   0.08424 
beta1     0.22601 

 
Here, we can see that the coefficients of ARCH and GARCH terms are equal. Hence, there exist symmetry in GARCH model. We can also see 
that all the coefficients’ terms ar1, ma1, omega, alpha, beta are statistically significant and also the coefficients of conditional variance (omega 
and alpha) are positive and less than 1. Thus, the assumptions of GARCH model are satisfied. It seems that the GARCH (1,1) model with an 
ARFIMA (3,0,3) mean model and Normal distribution is a reasonable fit for the data. The estimated parameters are statistically significant, and 
the model passed several diagnostic tests, including the weighted Ljung-Box test and the Nyblom stability test. Additionally, the Information 
Criteria values suggest that the model has good explanatory power. Overall, the GARCH (1,1) model provides a useful framework for modeling 
the volatility dynamics of the time series data. also, the ARCH coefficient (alpha) measures the impact of past squared residuals on the current 
conditional variance and the GARCH coefficient (beta) measures the impact of past conditional variance on the current conditional variance. 
Similarly, the lambda coefficient measures the impact of skewness on the conditional variance and the gamma coefficient measures the impact of 
kurtosis on the conditional variance.  
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Figure 12: The New Impact Curve (plots the remaining patterns in the residuals 

 
It is clear from the new impact curve that no asymmetries are present in response to positive and negative shocks. We can tur
include asymmetry as well by using EGARCH or TGARCH. The estimation results for
fits the volatility of ARIMA (1,1,2). The parameters estimated for GARCH (1,1) model is,

 
  mu         ar1      ar2       ar3         ma1      ma2       ma3       omega   alpha1      
   

0.14464 0.06106  0.12995     0.13410     0.03907     0.24519      0.10703      0.46020    0.08424     beta1 0.22601

  
Thus, the ARIMA- GARCH model for the return series is given by,

 
 
Where, 
 
Forecasting:  One of the most important objective of time series modeling is to forecast future values. In forecasting our objective is to 
an optimum forecast that has no error or possibly little error, which leads to minimum mean square error forecasting. Sin
for our data is ARIMA (1,1,2)- GARCH (1,1) is statistically significant. Also, our model satisfies the assumptions of stationarity and 
invertibility. Thus, we use this model to forecast the monthly crude oil price for the next 50 m

                Figure 13: Forecast using ARIMA (1,1,2).                 Figure 14: Forecast series with unconditional 1

 
Accuracy:  We can check the accuracy of our forecast values using MAPE, ME, MAE and MASE.
Box-Ljung test 
 
data:  arma1.resid 
 
X-squared = 44.782, df = 48, p-value = 0.6055 
 
Here, the p value is greater than 0.05. Hence, we accept the null hypothesis that the proposed model is sufficient for the da
 
Figure 16: Forecast Values of Crude oil price using 
 
ME         RMSE          MAE           MPE         MAPE        
Training set -542799.10015 6.053252e+07 3.820345e+06 
 
Test set       11.15559 2.546073e+01 2.095369e+01  4.761473e+00 2.928906e+01 
MASE ACF1 
 
Training set 9.988417e-01-0.0003490441 
Test set 5.478411e-06NA 
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Figure 12: The New Impact Curve (plots the remaining patterns in the residuals after fitting     the ARIMA model).

It is clear from the new impact curve that no asymmetries are present in response to positive and negative shocks. We can tur
include asymmetry as well by using EGARCH or TGARCH. The estimation results for this model shows that the estimated model GARCH (1,1) 
fits the volatility of ARIMA (1,1,2). The parameters estimated for GARCH (1,1) model is, 

mu         ar1      ar2       ar3         ma1      ma2       ma3       omega   alpha1       

0.06106  0.12995     0.13410     0.03907     0.24519      0.10703      0.46020    0.08424     beta1 0.22601

GARCH model for the return series is given by, 

One of the most important objective of time series modeling is to forecast future values. In forecasting our objective is to 
an optimum forecast that has no error or possibly little error, which leads to minimum mean square error forecasting. Sin

GARCH (1,1) is statistically significant. Also, our model satisfies the assumptions of stationarity and 
invertibility. Thus, we use this model to forecast the monthly crude oil price for the next 50 months. 

           
Figure 13: Forecast using ARIMA (1,1,2).                 Figure 14: Forecast series with unconditional 1

We can check the accuracy of our forecast values using MAPE, ME, MAE and MASE. 

Here, the p value is greater than 0.05. Hence, we accept the null hypothesis that the proposed model is sufficient for the da

Figure 16: Forecast Values of Crude oil price using the given data. 

ME         RMSE          MAE           MPE         MAPE         
542799.10015 6.053252e+07 3.820345e+06 -7.453269e+06 7.453272e+06 

Test set       11.15559 2.546073e+01 2.095369e+01  4.761473e+00 2.928906e+01  
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after fitting     the ARIMA model). 

It is clear from the new impact curve that no asymmetries are present in response to positive and negative shocks. We can turn the model to 
this model shows that the estimated model GARCH (1,1) 

0.06106  0.12995     0.13410     0.03907     0.24519      0.10703      0.46020    0.08424     beta1 0.22601 

One of the most important objective of time series modeling is to forecast future values. In forecasting our objective is to produce 
an optimum forecast that has no error or possibly little error, which leads to minimum mean square error forecasting. Since the best fitted model 

GARCH (1,1) is statistically significant. Also, our model satisfies the assumptions of stationarity and 

 
Figure 13: Forecast using ARIMA (1,1,2).                 Figure 14: Forecast series with unconditional 1-sigma bands. 

Here, the p value is greater than 0.05. Hence, we accept the null hypothesis that the proposed model is sufficient for the data. 

comprehensive analysis of price changes in crude oil data involving time series Modelling 



CONCLUSION 
 
Traditional statistical models such as ARIMA and Exponential Smoothing methods may not perform well with complex or non-linear data 
patterns. With the advent of machine learning, several models have been applied to time series forecasting and these models can capture non-
linear relationships, handle large feature sets, and provide good performance in many cases. In this study we suggest various models with special 
reference to OIL Data and these models excel at capturing long-term dependencies, temporal patterns, and non-linear relationships in the data. 
The choice of model for time series analysis depends on various factors, including the nature of the data, the desired interpretability, the available 
computational resources, and the specific forecasting requirements. There is no universally superior model, and it is often necessary to 
experiment with different approaches and select the one that best fits the specific problem at hand. In this study, it is evident that our model 
performance is relatively good in terms of ME, RMSE, MAE, MASE and ACF1 values. We conclude that these model analyses pave a way to 
researchers in this area to do more practices on similar approaches in future. 
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