

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 6, Issue, 01, pp.4601-4605, January, 2014 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

ROLE OF EXERCISING MUSCLE IN SLOW COMPONENT OF VO2

*Dr. Adesola, Adefemi Muritala

Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria

ARTICLE INFO	ABSTRACT
Article History:	This paper (1) reviews evidence for the location of the slow component of VO_2 kinetics either within the converting line is a different size of the location of the locati
Received 14 th October, 2013	the exercising limbs or alternatively at some site in the rest of the body, e.g., ventilatory, cardiac or
20 th November 2013	accessory muscles (2) presents evidence in support of boun the last and slow components (i.e., < 5 min and > 3 min from exercise onset respectively) of the exercise VO, response residing
Accepted 07 th December, 2013 Published online 26 th January, 2014	predominantly in the exercising muscle. For a pulmonary VO ₂ slow component in excess of 600 ml O_2 min ⁻¹ , more than 80% could be attributed to an augmented VO ₂ across the exercising limbs, (3)
Key words:	Assesses the potential for the lactate ion per se to exert a metabolic stimulatory effect in exercising muscle in the absence of the potentially confounding influences of changes in muscle temperature, H ⁺ ,
Oxygen uptake kinetics,	blood flow or O ₂ delivery within the surgically isolated, electrically stimulated canine gastrocnemius,
Lactate metabolism,	square wave infusions that increased arterial blood [lactate] by ~10mM and intramuscular [lactate] to
Leg VO ₂ ,	in excess of 9 mM did not increase muscle VO ₂ . In summary, these investigations demonstrate that
Canine gastrocnemius	the exercising muscle is the predominant site of the VO ₂ slow component. However, despite the close
	temporal association between changes in blood lactate and VO_2 , during intense exercise, lactate itself does not mendate an additional VO_2 demand in exercising dog muscle

Copyright © Dr. Adesola, Adefemi Muritala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Physical exercise performed at a constant power output above the lactate threshold (T_{Lac}) mandates an additional O_2 cost (i.e., slow component) which is superimposed on the rapid O_2 kinetics associated with exercise onset and which elevates VO₂ above that predicted from the sub- T_{Lac} VO₂ - work rate relation (Henson et al., 1989; Whipp and Mahler 1980; Whipp and Wasserman 1972). This slow component is separate from the initial exercise response, being initiated following a discrete interval after exercise onset (Barstow and Mole 1991; Paterson and Whipp 1991). For exercise performed within the "heavy" intensity domain (Whipp and Mahler 1980), i.e., above T_{Lac} but below the fatigue threshold, both blood lactate and VO₂ asymptote (Poole et al., 1988). However, for all work rates above the fatigue threshold ("severe" intensity), both blood lactate and VO₂ rise inexorably until fatigue ensues. In these instances, VO₂ attains its maximum and may be in excess of 1L. Min⁻¹ greater than estimated for the work rate based on the sub-T_{Lac} VO₂ - work rate relation. Despite the metabolic and clinical significance and association with the fatigue process, the etiology of the VO₂ slow component remains controversial. A cardinal feature of the VO₂ slow component is its relationship with the blood lactate profile. Specifically, (Aaron et al., 1992) as mentioned previously, the slow component is present only for work rates $> T_{Lac}$ (Whipp and Mahler 1980;

Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria.

Whipp and Wasserman 1972) irrespective of the VO₂ at which T_{Lac} occurs (Henson et al., 1989); (Ahlborg and Felig 1976) beyond the rest - work transition for constant - load exercise, the magnitude (Roston et al., 1987) and temporal profile (Poole et al., 1988) of the VO₂ response follow closely that of lactate; and (Ahlborg and Felig 1977) exercise training induces a proportional reduction in the VO₂ slow component and blood lactate (Casaburi et al., 1987). Thus there is substantial evidence linking lactate with the VO₂ slow component. However, there is no proof as to cause and effect and it is possible to find examples in the literature where the profile of blood lactate and the VO2 slow component are dissociated (Scheen et al., 1981). The mechanism by which elevated lactate levels might stimulate VO₂ is not entirely clear. One putative mechanism would be via a stimulation of gluco - or glyconeogenic activity in resting muscle fibers. The metabolic cost of this process far exceeds that estimated stoichiometrically from glycogen production (Newsholme and Gevers 1967).

Skeletal muscle of animals and humans contains the requisite enzymes and glyconeogenic activity has been demonstrated in mamalian muscle (Mclane and Holloszy 1979) even in the active state (Talmadge *et al.*, 1989). It is pertinent that lactate infusions may increase VO₂ in isolated dog gastrocnemius at rest (iso-pH conditions, 12) and in ponies during exercise (Erickson *et al.*, 1991). Supra-T_{Lac} constant – load exercise is generally accompanied by continued increases of heart rate, body (and muscle) temperature, and ventilation. Thus, the

^{*}Corresponding author: Dr. Adesola, Adefemi Muritala,

metabolic cost associated with these events will be incorporated into the VO2 slow component. Although myocardial ATP demands must incrase over the pertinent range, the net VO_2 consequence of this is considered to be minor (Mole and Coulson 1985; Nelson et al., 1974). In constrast, the Q_{10} effect and the O_2 cost of ventilatory muscle work have been considered to account for most if not all of the VO₂ slow component (Hagberg et al., 1978). However, the fidelity of the underlying assumptions regarding the site and O₂ cost of elevated temperature and the lack of precision in estimating ventilatory muscle O2 requirements (Aaron et al., 1992; Cournand et al., 1957) have brought this conclusion into question (Poole et al., 1988, Whipp 1987). It was reasoned that apportioning the VO₂ slow component between the exercising limbs and the rest of the body may facilitate discrimination between mechanisms acting centrally (e.g., ventilatory and accessory muscle work, body temperature elevations) as distinct from those acting peripherally (e.g. fiber type influences and other metabolic features operating within active muscle). The purpose of this paper is to summarise evidence that demonstrates by direct measurement, that the slow component of the VO₂ kinetics is located principally within the exercising limbs. Subsequently, the effect of iso-pH lactate infusions on exercising muscle VO2 were evaluated. No support was found for the notion that the lactate ion per se stimulates VO_2 in situ.

METHODS

Owing to space limitations, methodological details have been limited to a minimum. For the human studies, prior informed consent was obtained in accordance with the Ladoke Akintola University of Technology, human subjects committee requirements. For the animal studies all procedures were in accordance, with the guiding principles in the care and use of animals of the Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.

Muscle VO₂ measurements in Exercising humans

Several days following incremental and constant - load noninvasive exercise testing designed to determine maximum oxygen uptake (VO_{2max}), ventilatory threshold, and VO₂ - work rate relation, young healthy male subjects returned to the laboratory 12 hours post-absorptive. Electrocardiogram leads were established and two catheters (20 ga, radial artery, cook DSA 400L, femoral vein) were emplaced using sterile techniques. The cook catheter was introduced into the femoral vein 2 cm caudal to the inguinal ligament and advanced ~10cm distally. This catheter is designed with 10 pinhole sideports in the distal 1-2 cm oriented in all directions around the catheter to facilitate effective mixing of infused cold saline with blood across the vein lumen. The thermocouple (IT-18, physitemp instruments, clifton, NJ) was advanced from the same location to a position ~5 cm proximal in the same femoral vein. This flexibly insulated thermocouple has an O.D. of only 0.064 cm and is designed to "float" in mid-lumen. Although it was not feasible to ensure that the thermocouple tip was located distal to the entry of the saphenous flow, during exercise the contribution of saphenous flow is likely to be small. To measure femoral vein blood flow during exercise, iced saline $(\sim 4^{\circ}C)$ was infused at a constant flow rate between 100 and

250 ml. min⁻¹until the femoral vein temperature had stabilized for several seconds at a value about 1° C below baseline. Typically this takes between 10 and 20s. the precise rate of saline infusion was calculated following each experiment from a hardcopy of the change in saline bag weight during each infusion. At each time point, duplicate blood flows were determined on the basis of thermal balance principles as described by Andersen and Saltin (1985).

$$Q_{\text{leg}} = Qs (0.92 [T_2 - T_5]) [T_1 - T_2]^{-1}$$

Where Q_{leg} is femoral venous blood flow, Qs is saline inflow, Qs is saline inflow, T₁ is femoral vein temperature during infusion, T₂ is baseline femoral tempeature, Ts is saline temperature measured just prior to entry into the vein, and 0.92 and 0.97 are constants related to fluid heat capacity and density. Leg VO_2 was calculated as radial arterial $[Q_2]$ minus simultaneous femoral venous $[Q_2]$ times Q_{leg} and doubled to represent both exercising legs. Duplicate arterial and femoral venous blood gases were sampled immediately prior to each flow determination and analyzed for blood gases, pH, O2 saturation, [Hb], and O₂ content using an IL 813 blood gas analyzer and an IL 282 CO - oximeter (instrumentation laboratories, lexington, MA). Blood lactate was determined using a yellow springs instruments, model 23L blood lactate analyzer. For measurement of pulmonary VO₂, expired gas was passed through a baffled, heated 7.2-1 mixing box. Expired flow and volume were measured using a turbine system (VMM, Interface Associates, irvine, CA) and O₂ and CO₂ concentrations by a Perking-Elmer MGA 1100 mass spectrometer.

EXERCISE PROTOCOLS

Group 1: Seventeen subjects exercised for ~4 minutes at "O" W and then for 4-6 minutes at increasing constant load work rates calculated from prior incremental exercise to elicit between 20% and 90% VO₂ max. Leg flow and VO₂ measurements were made only after VO₂ (monitored online) had reached approximately. Stable values, i.e, 2 - 3 minutes following each work rate transition. This sampling schedule was designed to ensure that the rapid transient associated with each work rate transition was essentially complete without allowing sufficient time for a detectable slow component to develop. In addition, if visual inspection revealed that the pulmonary VO2 data at the highest work rates fell clearly above or below the regression line established for the lower points, these data were not used in subsequentanalyses. Also, the matching points for leg VO₂ were similarly discarded. Thus, the VO₂ – work rate relation was established over the linear portion of the response. Group 2: Six subjects exercised for 5 minutes at "O" W and then for 26 minutes at a sub – T_{Lac} work rate (133 \pm 10W). Following 30 – 60 minutes rest, each subject then performed severe – intensity exercise (295 \pm 10W) to exhaustion which occurred at 20.8 minutes, on average. Leg flow and VO₂ measurements were initiated at 3 minutes, and at regular intervals thereafter in each bout.

Surgically Isolated, Exercising Dog Gastrocnemius

In five adult mongrel dogs under deep sodium pentobarbitol anesthesia, the gastrocnemius – flexor digitorum superficialis muscle complex (abbr. gastrocnemius) was isolated as described by Hogan et al. (1988). The ipsilateral popliteal vein and contralateral femoral artery were cannulated. This allowed the gastrocnemius to be pump perfused (sigmamotor) with blood from the contralateral femoral artery. Arterial blood pressure at the head of the muscle was monitored constantly as was carotid artery pressure. Following isolation, the Achilles tendon was affixed to an isometric myograph for tension measurement with the muscle set at a length just below optimal for tension development. The ipsilateral sciatic nerve was doubly ligated, cut, and preserved for subsequent stimulation. A second pump was used to mix a lactate/lactic acid solution (350 mM L- (+) - Lactic acid [2 - hydroxypropionic acid; sarcolactic acid]) solution directly into the blood immediately prior to entry into the muscle. The pH of this solution was adjusted to 3.8 with NaOH to ensure maintenance of normal blood and acid - base status during infusion (Gladde and . Yates 1983).

Exercise protocol isometric muscle

Contractions (twitch) were evoked by sciatic nerve stimulation using square wave pulses (4-6 V) of 0.2 - ms duration at 2 Hz. This produced a muscle VO₂ of 30 - 40% VO_{2max}. Each muscle was stimulated for two 60 - minute bouts separated by 45-60 minutes for recovery. Each muscle performed alternately three 20 - minute bouts at control (C) blood [lactate] and the same at elevated blood [lactate] (H, [lactate] = 10 - 12 mM above C) in randomized order. Blood flow (drop method) blood gases and blood lactate were measured at 5 - minutes intervals. Periodic muscle biopsies were taken for lactate and pH determination. One crucial feature of this preparation was that it. Permitted the following variables to be maintained constant across conditions: muscle and blood pH, blood flow, perfusion pressure, O₂ delivery, and blood and muscle temperature.

RESULTS

Humans Studies

When no VO_2 slow component was detectable, the slope of the leg VO₂ – work rate relation matched closely that of pulmonary VO₂ (Figure 1). Thus, with increasing exercise intensity, leg VO₂ will assume a greater proportion of the pulmonary VO₂ (i.e., 75% at 83 W vs 84% at 289 W). Over this range of work rates (light to severe intensity), the metabolic cost of all support processes outside the exercising limbs tended to increase modestly from 375 ± 69 to 558 ± 108 ml. min⁻¹. The stability and reproducibility of the leg VO₂ measurement across time is demonstrated in the upper panel of Figure 2. For a moderate exercise intensity (133 \pm 10 W, i.e., 50 W < T_{Lac}), increases of both pulmonary and leg VO2 were complete within the initial 3 minutes of exercise. Neither pulmonary nor leg VO₂ increased significantly from minute 3 to end exercise at minute 26 (i.e., pulmonary, 2.08 \pm 0.17 to 2.06 \pm 0.14; leg, 1.36 ± 0.16 to $1.42 \pm 0.18 \mid O_2$. min⁻¹). In marked contrast, pulmonary VO₂ increased systematically during severe intensity exercise (295 \pm 10 W) until fatigue intervened at 20.8 minutes at which point, pulmonary VO2 was 99.8% of the independently measured VO₂ max (Figure 2, lower panel). For this particular mean rate, the greatest rate of increase in slow component was from ~15 to 60% of exercise time, and over this interval the quantitative agreement between changes of pulmonary and leg VO₂ was striking. Figure 3 illustrates this very relationship and suggests that, on average, 86% of the pulmonary VO₂ slow component can be accounted for by the exercising limbs.

Figure 1. Group mean response (\pm SE, N = 17) for pulmonary VO₂ and leg VO₂ plotted against work rate (from poole, D. C., G. A. Gaesser, M. C. Hogan, D. R. Knight, and P. D. Wagner. Pulmonary and leg VO₂ during submaximal exercise: implications for muscular efficiency. *J. Apply. Physiol.* 72:805-810, 1992).

Figure 2. Mean response (N = 6) of pulmonary and leg VO₂ to light (*upper panel*) and severe (*lower panel*) constant-load exercise; 100% of total exercise time represents 26 min for light exercise and point of fatigue (20.8 min, on average) at severe exercise (from Poole, D. C., W. Schaffartzik, D. R. Kinght, et al. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. *J. Apply. Physiol.* 71:1245-1253, 1991).

Figure 3. Relationship between mean pulmonary versus twice one leg VO₂ during severe exercise. Values represent actual Vo₂ minus 3 min value. Solid line is regressing ($\mathbf{r} = 0.911$, N = 6). Dashed line is line of identity. Numbers denote sampling time as percentage of total exercise time (from Poole, D. C., W. Schaffartzik, D. R. Kinght, *et al.* Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. *J. Apply. Physiol.* 71:1245-1253, 1991).

Figure 4. Popliteal artery [lactate] (*solid symbols*) and muscle VO₂ (open symbols) during 3×20 min cycles of control and high lactate conditions for one animal. Notice the absence of any VO₂ increase associated with the lactate infusion, i.e., in period 1 at 20 min and in period 2 at 0 and 40 (from Poole, D. C., W. Schaffartzik, D. R. Kinght, *et al.* Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. *J. Apply. Physiol.* 71:1245-1253, 1991).

Figure 5. Mean VO₂ under control (*solid symbols*) and high lactate (*open symbols*) conditions for each dog. Note significant (P < 0.05) fall in VO₂ with the high [lactate] condition (from Poole, D. C., L. B. Gladden, S. Kurdak and M. C. Hogan. L-(+)- Lactate infusion into working dog gastrocnemius: no evidence lactate *per se* mediates VO₂ slow component. J. Apply. Physiol. 76:787-792, 1994)

Animal Studies

Having established that the exercising limbs and thus, the exercising muscles are the predominant source of the "excess" VO₂, lactate infusion into exercising dog muscle was undertaken to determine whether this might stimulate VO₂. As can be seen in Figure 4, despite an elevation of blood [lactate] by 10 - 12 mM (and muscle [lactate] > 9 mM), there was no increase of muscle VO₂. On the contrary, when all studies were pooled, there was a significant reduction in VO₂ associated with the augmented lactate flux (Figure 5).

DISCUSSION

Collectively, these human studies demonstrate that for both the fast initial and slow secondary components of the VO_2 response to exercise, measurements made at the mouth reflect closely those occurring across the exercising muscles. Although the absolute contribution of support processes outside the exercising limbs may increase with increasing exercise intensity, for large muscle exercise its magnitude is small in comparison with the increased VO_2 commanded by

the working limb muscles. The conclusion that the VO2 slow component arises from within the exercising muscles is consistent with the data fromprevious publications which reveal a time - dependent rise in muscle VO2 at constant rates of work (Rowell et al., 1986) or tension development (Vollested et al., 1990). Furthermore, from their assembly and analysis of the data of Ahlborg et al. (1976-1974) and Wahren et al. (1971), Mole and Coulson (1985) concluded that the exercising limbs were the principal source of the delayed rise in VO₂ that accompanied prolonged exercise. As mentioned in the introduction, increased respiratory muscle work necessary to drive augmented ventilatory volumes has been considered an important source of the VO2 slow component during heavy and severe exercise (Hagberg et al., 1978). However, in that study the estimated cost of ventilation was extremely high (i.e, ~ 7ml $O_2.1 V_E$. min⁻¹) and not adjusted for the demonstrated curvilinear relationship between VO_2/V_E which is a consistent feature at high ventilations (9, 31, rev. 1). Using the recent data of Aaron et al. (1992), and adjusting for absolute rates of V_E the data from ref. 14 yield a very different conclusion. Specifically, at the two work rates studied, only a modest fraction of the VO₂ slow component (10-23%) could be attributed to respiratory muscle work.

In the present investigation, for those studies in which the duration of each work rate interval was constrained so as to preclude development of a slow component, V_E increased ~1001.min⁻¹ from the lowest (83 W) to the highest (289 W) work rate depicted in Figure 1. Over the same work rate interval, pulmonary minus leg VO_2 increased about 180 ml.min⁻¹. Thus, had all the additional O_2 used gone to support the additional ventilation, each 1L. min⁻¹ of V_E cost 1.8 ml O_2 .min⁻¹; which is toward the lower extreme of the values calculated by Aaron et al. (1992). During constant load exercise, however, pulmonary minus leg VO₂ showed almost no change over a 401.min⁻¹ increase in ventilation an observation which suggests that any increase in respiratory muscle VO_2 must have been either within the noise of the leg VO₂ measurement or alternatively, counterbalanced by a decreased metabolic cost of some other process outside the exercising limbs. Other investigations have demonstrated increases of V_E during exercise in the absence of augmented pulmonary VO₂ (Dill et al., 1931; Poole et al., 1988; Rowell 1971; Scheen et al., 1981). In humans during heavy and severe - intensity exercise, there is a complex ensemble of potentially calorigenic influences acting simultaneously within the exercising limbs. It is only possible therefore, to define with certainty, the role of any single potential mediator of the VO₂ slow component (e.g. lactate) by removing all other confounding influences. Obsivously, this cannot be done in the intact human and so the electrically stimulated surgically isolated dog gastrocnemius offers a useful compromise. In this model, blood and muscle lattate can be altered rapidly while maintaining such factors as muscle temperature, blood flow, O₂ delivery, and muscle and blood pH constant. When this is done, square-wave inputs of blood lactate sufficient to raise muscle [lactate] by at least several mM fail to increase muscle VO₂ (Fig. 5). On the contrary, a small though reproducible fall in muscle VO₂ (and tension) was found at high blood and muscle (lactate) there are several pertinent differences between the in situ dog gastrocnemius preparation and that of the exercising human which may have a bearing on the results,

which include: (Aaron et al., 1992) Electrical stimulation activates the entire muscle. Thus, time dependent motor unit recruitment patterns that may incur a changing VO₂ requirement with time are abolished. (Ahlborg and Felig 1976) Human leg muscles contain a modest proportion of fast glycolytic (Type 11b) fibers whereas the dog gastrocremius is comprised exclusively of slow oxidative (Type 1) and fast oxidative glycolytic (Type 11a) Fibers (Maxwell et al., 1977). (Ahlborg and Felig 1977). In humans, both leg blood flow and O₂ extraction contribute to the VO₂ slow component (Poole et al., 1991). In the dog gastrocnemius in order to avoid flow driven changes in VO₂, blood flow was maintained constant across conditions. This situation may have limited the magnitude of any VO₂ increase but should not have abolished it entirely. (Ahlborg and Felig 1982) By definition, humans performing constant-load work maintain a stable power output. With the electrically stimulated dog gastronemius, lactate induced a fall in tension that was paralleled by a reduced VO₂. It is obvious that the strength of any statement regarding the interelationship between lactate and VO2 made on the basis of these studies must be tempered by the above considerations. However, accepting these limitations, no evidence was found to support a causal mechanism for lactate metabolism in the VO₂ slow component. Given the strong temporal association between blood lactate profiles and the pulmonary VO₂ slow component (e.g., Poole et al., 1988), it is plausible that some common underlying mechanism gives rise to both processes. The likelihood that this mechanism is related in some manner to either the recruitment, metabolism, or kinetics of different fiber types should be considered.

REFERENCES

- Aaron, E.A., B.D. Johnson, C.K. Seow, and J.A. Dempsey. , 1992. Oxygen Cost of Exercise hyperpnea: Measurement. J. Appl. Physiol. 72: 1810-1817.
- Ahlborg, G., P. Flig, L. Hagenfeldt, R. Hendler, and J. Wahren. 1974. Substrate turnover during prolonged scercise in man. Splanchnic and leg metsbolism of glucose, free fally acids, and amino acids. J. Clin invest. 53: 1080-1090.
- Ahlborg, G. and P. Felig.1976. Influence of glucose ingestion on fuil hormone response during prolonged scercise. J. Appl. Physiol. 41:683-688.
- Ahlborg, G. and P. Felig. 1986. Lactate and glucose xchange across the forearm, legs and splanchnic bed during and. After prolonged leg scercise. J. Clin. Invest, 53:69:45-54.
- Ahlborg, G. and P. Felig. 1977. Substrate utilization during prolonged scercise precedd by ingestion of glucose. AM. J. physiol. 233: E188-194.
- Ahlborg, G. and P Felig. Lactate and glucose xchange across the forearm, legs and splanchnic bed during and after prolonged leg exercise J. clin. Invest, 53:69:45-54 1982
- Andersen, P. and B. Sattin. 1985. Maximal perfusion of skeletal muscle in man. *J. physio.* 366: 233-240.
- Barstow, T.J. and P.A. Mole. 1991. Linear and nonlinear characteristics of oxygen uptake kinetics during neary scercise. *J. Appl. Physiol.* 71:2099-2106.
- Casaburi, R., T.W Storer, I. Ben-Dov, and K. Wasserman. 1987. Effect of endurance training on possible determinats of VO₂ during heary scrcise J. Appl. Physiol. 62:199-207.
- Cournand, A., D. W. Richards, R.A. Bader, M.E. Bader, and A.P. Fishman. 1957. The oxygen cost of breathing. Trans Assoc. AM. PHYSICIANS 67: 162-173.

- Dill, D.B., H.T. Edwards, P.S. Bauer, and E.J. Levenson. 1931. Physical performance in relation to external temperature. Arbeits physiologle 4: 508-518.
- Erickson, B.K, H.V. Forster, L.G. Pan, *et al.* 1991. Ventilatory compensation for lactacidosis in ponies: role of carotid chemoreceptors and lung afferents. *J. Appl. Physiol.* 70: 2619-2626.
- Gladde, L.B. and J.W. Yates. 1983. Lactic acid infusion in dogs. Effects of varying infusate PH. J. Appl. Physiol. 54: 1254-1260.
- Hagberg, J.M., J.P. Mullin, and F.J. Nagle. 1978. Oxygen consumption during constant-load exercise. J.Appl. physiol. 45:381-384.
- Henson, L.C., D.C. Poole, and B.J. Whipp. 1989. Fitness as a determinant of oxygen uptak response to constant-load sxercise. *Enr. J. Appl. Physiol. Occup. Physiol.* 59: 21-28.
- Hogan, M.C., J. Roca, P.D. Wagner, and J.B. West. 1988. Limitstion of maximal O₂ uptake and performance by acute hypoxis in dpg muscle in situ. J. Appl. Physiol. 65 815-821.
- Maxwell, L.C., J.K. Barclay, D.E. Mohrman, and J.A. Fawlkner. 1977. Physiological characteristics of skeletal muscles of dogs and cats. AM. J. physiol. 233:C14-C18.
- Mclane, J.A. and J.O. Holloszy. 1979. Glycogen aynthesis from lactate in the three types of skeletal muscle. J. Biol. Chem. 254: 6548- 6553.
- Mole P. and R.L. Coulson. 1985. Energetics of myocardial function. *Med. Sci. sports Exerc.* 17: 538-545.
- Nelson, R.R, F.L. Gobel, C.R Jorgensen, K. Wang, and H.L. Taylor. 1974. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50:1179-1189.
- Newsholme, E.A. and .W. Gevers. 1967. Control of glycolysis and gluconeogenesis in lives and kidney Cortex. Vitamins Hormones 25:1-87.
- Paterson, D.H. and B.J. Whipp. 1991. Asymmetries of oxygen uptake transients at the on and off set of heavy exercise in humans. J. Physiol. 443: 575-586.
- Poole D.C., G.A. Gaesser, M.C. Hogan, D.R. Knight, and P.D. Wagner. 1992. Pulmonary and leg VO₂ during Submaximal exercise: implications for muscular efficiency. *J. Appl. Physiol.* 72:805-810.
- Poole, D.C., S.A. Ward, G. W. Gardner, and B.J. Whipp. 1988. Metabolic and respiratory profile of the uper limit for prolonged exercise in man. Ergonomics 31:1265-1279.
- Poole, D.C., W. Schaffartzik, D.R. Knight, et al. 1991. Contribution of exercise legs to the slow component of oxygen. J. Appl. Physiol. 71:1245-1252.
- Roston, W.L., B.J. Whipp, J.A. Davis, D.A. 1987. Cunningham, R.M. Effros, and K. Wasserman. Oxygen uptake kinetics and lactate concentration during exercise in humans. *Am. Rev. Respir. Dis.*135: 1080-1084.
- Rowell, L.B. 1971. Cardiovascular limitations to work capacity. In physiology of work capacity and fatigue, E. Simonsen (Ed.), Springfield, IL: Charles. C. Thomas, pp. 132-169.
- Rowell, L.B., B. Saltin, B. Kiens and N.J. Christensen. 1986. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? *Am. J. Physiol.* 251: H1038-1044.
- Scheen, A., J. Juchmes, and A. Cession- Fossion. 1981. Critical analysis of the "Anaerobic Threshold" during exercise at constant workload. *Eur. J. Appl. Physiol.* 46: 367-377.
- Talmadge, R.J., J. L. Scheide, and H. Silverman. 1989. Glycogen synthesis from lactate in a chronincally active muscle. J. Appl. Physiol. 66: 2231-2238.