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INTRODUCTION

The concept of secondary k-normal was introduced in [Krishnamoorthy and Bhuvaneswari 2013]. Equivalent conditions on
normal matrices are given in [David W. Lewis 1991]. In this paper, our intention is to define s-k unitarily equivalent matrices and

prove some equivalent conditions on s-k normal matrices. Also we prove some results on s-k normal matrices. Let Cnxn be

the space of NXN complex matrices. Throughout, let ‘k” be a fixed product of disjoint transpositions in Sn the set of all
permutations on {1,2,3,....n} (hence involutory) and ‘K’ be the associated permutation matrix and “V’ is the permutation matrix

— —s
*
with units in the secondary diagonal. Clearly ‘K’ and V" satisfies the following properties. K=K T=KS=K" =K ; K?=|

— —s
V=VT=vs=v'=V =V V3.
A matrix A €Cpyn issadtobesk hermitian matrix it KVA VK = A

2. Definitions:  In this section, we define s-k normal, s-k unitary and s-k unitary equivalent matrices.

Definition 2.1: A matrix A € Ciyyy  issaid to be secondary k-normal (s-k normal) if A(KVA'VK)= (KVA VK)A.

43 0 L+
Example 2.2 A = 0 143 0 isan s-k normal matrix for k=(1,2)(3) the permutation matrix be
0 0 1+3i

010 001
K=[1 0 o|ad v=|0 1 0
001 1 00
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Definition 2.3: A matrix A € Cpyyn  issaid to be sk unitary if A(KVA*VK) = (KVA* VK)A=1.

I 0 i 010
Example 2.4 A=]0 1 O]} isansk unitary matrix for k=(1,2)(3) the permutation matrix be K=1 0 0Ofand
0O 0 i 0 01

00
v=0 1
10

o O Bk

Definition 25:  Let A,B € Ciyyn . Thematrix B is said to be secondary k-unitarily equivalent (s-k unitarily equivalent) to
A if there exists an s-k unitary matrix U suchthat B = (KVU*VK)AU :

3. Equivalent conditions on secondary k-normal matrices

Theorem 3.1: Let A € Cnxn Jf A is secondary k-unitarily equivalent to a diagonal matrix, then A is secondary k-normal.
Proof: Let A€ Cnxn A is secondary k-unitarily equivalent to a diagonal matrix D, then there exists an secondary k-

unitary matrix P such that (KVP ' VK) AP= D sy KVP*VK = P® similatyA®and D® .

Therefore A = PD PP ,since P issk unitary.

now  AA®=(PDP®)(PDP®)® =PDP*PD?P® -PDD®P®

since D and D® areeach diagonal, pD® =D%D

Therefore AA® = PD®DP? = PD?PPPDP? AA® = A®A since A =PDP® Hence A issk normal.
Remark 3.2: It can be shownthat A issecondary k-normal U A™ 1(KVA"VK) is sk unitary.

Theorem 33 Let HN € Crypy  beinvertible. If B= HNH , where H is sk hermitian and N is sk normal then

B_l(KV B*VK) issimilar to an s-k unitary matrix.

proof: Let HIN € Cryn  be invertible. If B= HNH , then BY(KVB'VK)=HNH? KV(HNH) VK
=HINTHY(KVH VK)(KVN VK)KVH VK) =HNTHIHKVN VK)H

Since N issk normal from remark (3.2), N_l(KVN*VK) is s-k unitary and hence the result follows.

Theorem3.4:. |If AECnxn iss-k unitary and if A isan eigenvalueofA,then‘)\‘:l.

Proof: Since A €Cyn isskunitary, A issknormal. If A isaneigenvaueof A there exists an eigen vector U
' 0 such tha AU=AU which implies (KVA*VK)UZXU as A is sk normad Now U=IU =
(KVA'VK)A)U whichleadsto U(1-M)=0.sinceU 0, 1-AA=0 whichimpliesthat [A|=1 .



5260 International Journal of Current Research, Vol. 6, | ssue, 02, pp.5258-5261, February, 2014

Theorem 35: Let A € Cixn . Assumethat A= UP  where U is sk unitary and P is non singular and sk hermitian

such that if P2 commuteswith U then P also commuteswith U . Then the following conditions are equivalent.
0] A issknormal

iy UP= PU
iii AU=UA
Eivi AP=PA

()0 (ii): 1f A issknormal, then A(KVA'VK)= (KVA" VK)A
since A=UP, (UP)(KV(UP)"VK)= (KV(UP) VK)UP

p UPKVP U'VK = KVP U VKUP

p UP KVP VK KVU VK = KVP VK KVU VK UP
b UPPU™ '= PU 'UP
p UP= PU

Conversely if UP= PU then KV (UP)" VK = KV (PU) VK
Now, A(KVA'VK)= (UP)KV(UP) VK
=UPKV(PU) VK
= UKVPVKKVU VKP  snce Pissk hermitian
= U(KVU VK)KVP VK P
= (KVU VK)UPP since P issk hemitian and sk unitary
= (KVU" VK)PUP snce PU=UP
= (KVU" VK)(KVP VK)UP
= (KV(PU) VK)UP
A(KVA'VK)= (KV(A) VK)A
Hence A is sk norma
M O (ii):
If A issk normal, then AU=(UP)U =U(PU) =U(UP) by ().
Conversely, if AU=UA , then (UP)U:U(UP)
(KVU" VK)(UP)U = (KVU" VK)U(UP)
b (KVUVK)U)PU=((KVU VK)U)UP
b PU = UP . Therefore A issk normal.
) U (@iv): 1fAaissknorma AP=(UP)P = PUP =PA.
Conversely,if AP =PA | then (UP)P=P(UP)

Post multiplying by P-liwe have UP= PU andso A issk normal.
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Theorem 36:  LetA € Crpy . Assume that A=UP where U is sk unitary and P is non singular and secondary k-

hermitian such that Pz commutes with U , then P aso commutes with U then P also commutes with U . Then the
following conditions are equivalent.

() A issecondary k-normal.

(i)  Any eigen vector of U isan eigen vector of P (aslongasU has distinct eigen values).

(iii)  Any eigen vector of Pisan eigen vector of ) (aslong as P has distinct eigen values).
(iv)  Any eigen vector of U isan eigen vector of A (aslong as U hasdistinct eigen values).

(v)  Any eigen vector of A isaneigenvector of U (aslongas A hasdistinct eigen values).

Proof: (I) U (II)

Let U have distinct eigen values. If we prove UP= PU U any eigen vector of U is an eigen vector of P, then
(I) U (II)Z follows by theorem (3.5) . Assume that any eigen vector of U isan eigenvector of P. If X isaneigen

vector of U, then X isalso an eigen vector of P. Therefore there exist eigen values A and msuch that UX=AX and
PX=nX. Now UX=AX impliesPUX=PAX=AuUX . similaly PX=nX implies UPX=AU X. Therefore
PUX =UPX P (PU-UP)X=0 whichimplies PU=UP as X! O.

Conversely, assume that UP=PU. it X isan eigen vector of U, then there exists an eigen value A such that

UX=AX . Let U be an eigen value of U such tha UX = X ThereforeA? P. NowUP= PU implies
(UP-PU)X = 0 whichshowsthat UPX = APX_ similaly UX = X implies UPX=UPX .
Therefore APX = UPX P (A\-U)PX=0 P PX=0as A- P! 0. Theefore PX=0X and hence

X isan eigen vector of P corresponding to the eigen vaueO. In general, if U isan eigen value of U, then we can prove

that X isalsoan eigen vector of P. Therefore any eigen vector of U isaso eigen vector of P.
Similar proof holds for other equivalent conditions.
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