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INTRODUCTION

The concept of secondary k-normal was introduced in [Krishnamoorthy and Bhuvaneswari 2013].  Equivalent conditions on
normal matrices are given in [David W. Lewis 1991].  In this paper, our intention is to define s-k unitarily equivalent matrices and

prove some equivalent conditions on  s-k normal matrices.  Also we prove some results on s-k normal matrices.  Let nxnC be

the space of nxn complex matrices. Throughout, let ‘k’ be a fixed product of disjoint transpositions in nS the set of all

permutations on {1,2,3,….n} (hence  involutory) and ‘K’ be the associated permutation matrix and ‘V’ is  the permutation matrix

with units in the secondary diagonal. Clearly ‘K’ and ‘V’ satisfies the following properties. T S
s*K=K =K =K =K ; 2K =I

S
T S *V=V =V =V =V =V ; 2V =I .

A matrix nxnA C is said to be s-k hermitian matrix if
*KVA VK A= .

2. Definitions: In this section, we define s-k normal, s-k unitary and s-k unitary equivalent matrices.

Definition 2.1: A matrix nxnA C is said to be secondary k-normal (s-k normal) if * *A(KVA VK) (KVA VK)A= .

Example 2.2: A =
1 3 0 1

0 1 3 0

0 0 1 3
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

 
 
 
 

is an s-k normal matrix for k=(1,2)(3) the permutation matrix be

 K =

0 1 0

1 0 0

0 0 1

 
 
 
 
 

and V

0 0 1

0 1 0

1 0 0

 
 
  
 
 
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Definition 2.3: A matrix nxnA C is said to be s-k unitary if
* *A(KVA VK) (KVA VK)A I= = .

Example 2.4: A =

0

0 0

0 0

i i

i

i
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 
 

is an s-k unitary matrix for k=(1,2)(3) the permutation matrix  be  K =

0 1 0

1 0 0

0 0 1

 
 
 
 
 

and

V

0 0 1
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1 0 0

 
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  
 
 

.

Definition 2.5: Let nxnA,B C . The matrix B is said to be secondary k-unitarily equivalent (s-k unitarily equivalent) to

A if there exists an s-k unitary matrix U such that
*B (KVU VK)AU= .

3. Equivalent conditions on secondary k-normal matrices

Theorem 3.1: Let nxnA C . If A is secondary k-unitarily equivalent to a diagonal matrix, then A is secondary k-normal.

Proof: Let nxnA C .  If A is secondary k-unitarily equivalent to a diagonal matrix D , then there exists an secondary k-

unitary matrix P such that
*(KVP VK)AP D= .Say

ΦKVP VK = P
.Similarly

Φ ΦA and  D .

Therefore
ΦA PDP , since P is s-k unitary.

Now
Φ Φ Φ ΦAA =(PDP )(PDP ) ΦΦ Φ=PDP PD P = PDD P 

Since D and
Φ D are each diagonal,

Φ Φ DD D D

Therefore
ΦAA = PD DP  = PD P PDP   Φ ΦAA = A A , Since

ΦA PDP . Hence A is s-k normal.

Remark 3.2: It can be shown that A is secondary k-normal
*A (KVA VK)1-Û is  s-k  unitary.

Theorem 3.3 Let nxnH,N C be invertible.  If B HNH= , where H is s-k hermitian and N is s-k normal then

-1 *B (KVB VK) is similar to an s-k unitary matrix.

Proof: Let nxnH,N C be invertible. If B HNH= , then -1 * -1 -1 -1 *B (KVB VK)=H N H KV(HNH) VK
-1 -1 -1 * * *=H N H (KVH VK)(KVN VK)(KVH VK) -1 -1 -1 *=H N H H(KVN VK)H

Since N is s-k normal from remark (3.2),
-1 *N (KVN VK) is s-k unitary and hence  the result follows.

Theorem 3.4: If nxnA C is s-k unitary and if λ is an eigen value of A, then λ =1 .

Proof: Since nxnA C is s-k unitary, A is s-k normal.  If λ is an eigen value of A there exists an eigen vector U

¹ 0 such that AU=λU which implies
*(KVA VK)U=λU as A is s-k normal .Now  U = IU =

*((KVA VK)A)U which leads to U(1-λλ)=0 .Since U ¹ 0, 1-λλ=0 which implies that λ =1 .
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Theorem 3.5: Let nxnA C .  Assume that A UP= where U is s-k unitary and P is non singular and s-k hermitian

such that if
2P commutes with U ,then P also commutes with U .  Then the following conditions are equivalent.

(i) A is s-k normal

(ii) UP PU=
(iii)   AU=UA
(iv) AP=PA

(i)  (ii):Û If A is s-k normal, then
* *A(KVA VK) (KVA VK)A=

Since A=UP , * *(UP)(KV(UP) VK) (KV(UP) VK) UP=
* * * *UP KVP U VK KVP U VKUPÞ =

* * * *UP KVP VK KVU VK KVP VK KVU VK UPÞ =
1 1UPPU PU UP- -Þ = ,

UP PUÞ =
Conversely if UP PU= then

* *KV(UP) VK KV(PU) VK=
Now,

* *A(KVA VK) (UP)KV(UP) VK=
*=UP KV(PU) VK

* *U KVP VK KVU VK P= since P is s-k  hermitian

* *U(KVU VK)KVP VK P=
*(KVU VK)U PP= since P is s-k hemitian and s-k unitary

*(KVU VK)PUP= since PU=UP
* *(KVU VK)(KVP VK) UP=

*(KV(PU) VK) UP=
* *A(KVA VK) (KV(A) VK)A=

Hence A is s-k normal

(i) (iii):Û

If A is s-k normal, then AU=(UP)U =U(PU) =U(UP) by (ii).

Conversely, if   AU=UA , then  (UP)U=U(UP)
* *(KVU VK)(UP) U (KVU VK) U(UP)=

Þ * *((KVU VK)U)PU=((KVU VK)U)UP
Þ  PU = UP . Therefore A is s-k normal.

(i) (iv):Û If A is s-k normal   AP=(UP)P  =  PUP  = PA .

Conversely, if   AP = PA ,  then  (UP)P = P(UP)

Post multiplying by
-1P , we have UP PU= and so A is s-k normal.
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Theorem 3.6: Let nxnA C .  Assume that A=UP where U is s-k unitary and P is non singular and secondary k-

hermitian such that
2P commutes with U , then P also commutes with U then P also commutes with U .  Then the

following conditions are equivalent.

(i) A is secondary k-normal.

(ii) Any eigen vector of U is an eigen vector of P (as long as U has distinct eigen values).

(iii) Any eigen vector of P is an eigen vector of U (as long as P has distinct eigen values).

(iv) Any eigen vector of U is an eigen vector of A (as long as U has distinct eigen values).

(v) Any eigen vector of A is an eigen vector of U (as long as A has distinct eigen values).

Proof: (i)  (ii):Û

Let U have distinct eigen values.  If we prove UP PU= Û any eigen vector of U is an eigen vector of P , then

(i)  (ii):Û follows by theorem (3.5) .  Assume that any eigen vector of U is an eigen vector of P .  If  X is an eigen

vector of U , then  X is also an eigen vector of P . Therefore there  exist eigen values λ and msuch that UX=λX and

PX= Xm .  Now UX=λX implies PUX=PλX=λμX .  Similarly PX= Xm implies UPX= λμ X. Therefore

PUX = UPX  (PU- UP)X=0Þ which implies PU = UP as X  0.¹
Conversely, assume that UP PU= . If  X is an eigen vector of U , then there exists an eigen value λ such that

UX=λX . Let μ be an eigen value of U such that UX = μ X Therefore λ μ¹ . Now UP PU= implies

(UP - PU)X 0= which shows that UPX = λPX . Similarly UX = μ X implies UPX=μPX .

Therefore λPX =  μPX  (λ- μ)PX=0Þ  PX=0 as λ μ 0.Þ - ¹ Therefore PX = 0 X and hence

 X is an eigen vector of P corresponding to the eigen value 0 . In general, if μ is an eigen value of U , then we can prove

that  X is also an eigen vector of P .  Therefore any eigen vector of U is also eigen vector of P .
Similar proof holds for other equivalent conditions.
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