

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 6, Issue, 11, pp.9440-9444, November, 2014 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

FREQUENCY OF *H.PYLORI* INFECTION IN MALNOURISHED CHILDREN ADMITTED TO NUTRITIONAL REHABILITATION CENTER

*Dr. Haitham Ahmed Najim and Dr. Sawsan Issa Habeeb

Department of Pediatrics, College of Medicine, University of Basra, Iraq

ARTICLE INFO	ABSTRACT				
Article History: Received 17 th August, 2014 Received in revised form 21 st September, 2014 Accepted 24 th October, 2014 Published online 18 th November, 2014	A Case-control study was carried out to determine the frequency of <i>Helicobacter Pylori</i> (<i>H. pylori</i>) infection by <i>H. pylori</i> stool Ag test in malnourished children and it's relation to some selected variables. Sixty seven malnourished infants and children who have been admitted to nutritional rehabilitation center (NRC) in Basra General Hospital were regarded as cases and one hundred thirty nine healthy children who have visited primary health center, were regarded as control, their age ranged from 2 – 36 months over the period from the first of February till the end of September 2012.				
<i>Key words:</i> Malnutrition,	A special questionnane was designed to the purpose of the study, information included, age, sex, presenting symptoms, past history, feeding history, and history of treatment with antibiotics. Measurements of weight and length by standard procedure done for all infants and children recruited in the study. Antherparatria data (weight and length) are applied to appropriate abarts according to				
<i>H. pylori</i> infection, Diarrhea	In the study. Anthroponentic data (weight and fength) are applied to appropriate charts according to CDC/WHO charts. The study revealed a significantly higher percentage of positive <i>H. pylori</i> stool Ag in malnourished patients than control group (35.8%, 10.8%) respectively, $p < 0.0001$. In addition higher frequency of positive <i>H. pylori</i> stool Ag was found in patients with severe malnutrition than moderate malnutrition (54.2%, 45.8%) respectively but statistically not significant result $p > 0.05$. Regarding the sex of studied children although females have higher percentage of positive <i>H. pylori</i> stool Ag in both malnourished and healthy children (66.7%, 60%) respectively, but the difference statistically in not significant $p>0.05$. Positive <i>H. pylori</i> stool were found in higher frequency in malnourished patients older than 12 months (54.2%) compared to infants (45.8%) but in the control group there is a higher frequency of positive <i>H. pylori</i> stool in infants younger than 12 months (60%) compare to children older than 12 months (40%) and statistically not significant $p > 0.05$. Malnourished and control group who were not breast fed have higher frequency of positive <i>H. pylori</i> stool (70.8%, 73.3%) respectively than those with history of breast feeding is significantly associated with <i>H. pylori</i> infection in malnourished patients and control $p < 0.05$. Gastrointestinal symptoms were common presenting symptoms in malnourished patients 67.2%, with significantly associated with <i>H. pylori</i> infection in malnourished children. So detection of <i>H. pylori</i> infection by simple <i>H. pylori</i> isool Ag $p > 0.05$. But associated with <i>H. pylori</i> infection in malnourished children. So detection of <i>H. pylori</i> infection by simple <i>H. pylori</i> infection in malnourished children. So detection of <i>H. pylori</i> infection by simple <i>H. pylori</i> infection in malnourished children. So detection of the pylori infection by simple <i>H. pylori</i> infection in malnourished children. So detection of the pylori infection by simple <i>H</i>				

Copyright © 2014 Dr. Haitham Ahmed Najim and Dr. Sawsan Issa Habeeb. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Helicobacter pylori (*H. pylori*) previously named *Campylobacter pyloridis*, is a Gram-negative, microaerophilic bacterium found in the stomach. It was identified in 1982 by Barry Marshall and Robin Warren, who found that it was present in patients with chronic gastritis and gastric ulcers, conditions that were not previously believed to have a microbial cause and linked to the development of duodenal ulcers and stomach cancer. (Blaser 2006) Children differ from adults with respect to *H. pylori* infection in terms of the

*Corresponding author: Dr. Haitham Ahmed Najim, Department of Pediatrics, Basra Health Directorate. prevalence of the infection, the complication rate, the nearabsence of gastric malignancies, age-specific problems with diagnostic tests and drugs, and a higher rate of antibiotic resistance. Compared with adults, peptic ulcer disease is found less often in infected children undergoing upper endoscopy. (Koletzko *et al.*, 2011) Children present an ideal model for studying the interaction between *H. pylori* and the gastric mucosa because a pediatric-age child is free from the common causes of secondary gastro intestinal diseases (drugs, smoking and alcohol). (Ertem 2011) An important consequence of chronic *H. pylori* gastritis and gastric atrophy is low gastric acid output. Low gastric acid secretion results in an impaired "gastric barrier," which is associated with increased susceptibility to enteric infections, a major public health concern linked to diarrhea, malnutrition, and growth failure in children in the developing world. (Sarker *et al.*, 2004) The mechanisms for *H. pylori* infection to cause growth retardation, as follows: infection causes peptic symptoms, and dyspeptic symptoms causes malnutrition; when the infection exists for a long time some cytokines affecting growth are released and a chronic, low-degree gastric inflammation persists; *H. pylori* is frequent among families with low socioeconomic level (already have malnutrition and chronic infections). (Tafiar *et al.*, 2006)

Subjects and Methods

A Case-control study has been carried out on infants and children admitted to nutrition rehabilitation center (NRC) in Basra General Hospital were assessed for H. pylori infection by stool Ag test over the period from 1st of February 2012 to the end of September 2012. A total of 67 malnourished patients were included, their ages ranged from 2-36 months; 28 males and 39 females. One hundred thirty nine healthy children were randomly selected from children visiting primary health care center for routine checkup and vaccination, their ages range from 2 -36 months. Children with family history of peptic ulcer, or those receiving treatment as antibiotics and other drugs as H2 blockers and proton pump inhibitors in the last 6 weeks were excluded from the study. (Gulcan et al., 2005) A special Questionnaire was designed for the purpose of the study including presenting symptoms as diarrhea and its duration whether acute or chronic, vomiting, poor weight gain, fever and shortness of breath. Past history of recurrent diarrhea and previous hospitalization. Drug history of antibiotics used in the last 6 weeks. Feeding history; breast feeding, bottle feeding, or mixed and family history of gastrointestinal disease as peptic ulcer was taken. An informed consent was obtained from the parents for recruitment in the study.

All infants and children were underwent physical examination to assess their nutritional status and anthropometric measurement; weight and length were assessed and applied to appropriate charts Weight-for-height, weight-for-age and height-for-age (Z score) were estimated according to CDC/WHO normalized references (http://www.WHO.int/ nutgrowthdb/about/introduction/en/index5.html.Chapter Four References37) and accordingly classified as : >-1 SD normal -1 SD, mild -2 SD moderate and severe < -3 SD (wasting, underweight and stunting) respectively. Stool samples from patients and control children were tested for H. pylori stool antigen, the result were compared between malnourished patients and control group regarding their ages, sex, feeding history in addition nutritional status, presenting symptoms and past history of malnourished children. Data were analyzed using SPSS software Version 18.

RESULTS

A total of 67 malnourished patients were included in the study, their ages ranged from 2-36 months (mean age was 14.4 ± 2); and 139 infants and children as control group (mean age 13.2 ± 2)

Table-1shows that 61.2% of malnourished patients were younger than 12 months, 28(41.8%) were males and 39(58.2%) were females. There is no statistically significant difference regarding feeding pattern between malnourished children and control group (p > 0.05).

Nutritional status of hospitalized children

Nutritional status of malnourished cases were assessed as wasting, stunting, and underweight according to weight/length, length/age, and weight/age respectively as shown in Table 2.

Variables	_		Cases		Control	n valua	
variables		No.	%	No.	%	p-value	
Sex	Males	28	41.8	57	41	0.915	
	Females	39	58.2	82	59		
Age	2-6	21	31.3	37	26.6	0.771	
Months	>6-12	20	29.9	43	30.9		
	>12-36	26	38.8	59	42.5		
Feeding pattern							
breast feeding		26	38.8	58	41.7	0.895	
Bottle feeding		23	34.3	44	31.7		
Mixed feeding		18	26.9	37	26.6		
Total		67	100	139	100		

Table 1. Distribution of cases and control according to age, sex and feeding pattern

Table 2. T	ypes and	severity of	nutritional	status of	hospitalized	children
------------	----------	-------------	-------------	-----------	--------------	----------

7	Wast	ing	Stur	nting	Underweight	
Z-score	No.	%	No.	%	No.	%
-2 to -3 SD	41	61.2	17	25.4	42	62.7
Moderate (38)						
<-3 SD	11	16.4	12	17.9	25	37.3
Severe (29)						
Total	52	77.6	29	43.3	67	100
(67)						

All admitted children to nutritional rehabilitation ward were underweight. Out of 67 malnourished patients, 52(77.6%) were wasted and 29(43.3%) were stunted. Moderate wasting and stunting were more frequent among admitted children (61.2%), (25.4%) respectively; while severe wasting was recorded only in 11(16.4%). Depending on either weight/height or weight/age, 38(56.7%) of patients have moderate malnutrition and 29(43.3%) have severe malnutrition.

Clinical presentation and past medical illness

Presenting symptoms and past history of hospitalized patients were shown in Table 3, about 67% of malnourished patients presented with gastrointestinal symptoms as diarrhea, vomiting or both. Only 16.4% presented with poor weight gain and 10.4% presented with pneumonia. From 67 malnourished patients, 37.3% had history of recurrent diarrhea and 46.3% had history of previous hospitalization.

 Table 3. Distribution of malnourished infants and children according to their clinical presentation and past medical illness

Presenting symptoms	No.	%
Diarrhea and vomiting	19	28.4
Diarrhea	12	17.9
Vomiting	9	13.4
Chronic diarrhea	5	7.5
Poor weight gain	11	16.4
pneumonia	7	10.4
Fever	4	6
Total	67	100
Past medical illness		
Recurrent diarrhea	25	37.3
Previous hospitalization	31	46.3

H. pylori stool Ag results

Patients and control group were tested for *H. pylori* stool Ag and the results presented in Table 4-1. Higher frequency of positive *H. pylori* stool Ag in malnourished cases 24 (35.8%) than control group 15 (10.8%); with statistically significant result (p < 0.0001). *H. pylori* stool Ag result according to nutritional status

 Table 4.1. Results of *H. pylori* stool Ag in malnourished patients and control group

	Hps Ag	Malno pat	ourished ients	Ca	ases		
		No.	%	No.	%	p-val	ue
	Positive	24	35.8	15	10.8	< 0.00	001
	Negative	43	64.2	124	89.2		
	Total	67	100	139	100		
Breas	st feeding his	story					
Yes			7	29.2	4	26.7	0.698
No			17	*70.8	11	**73.3	
Total			24	100	15	100	

H. pylori stool Ag result according to age, sex and feeding history

Table 4-2 there was no statistically significant difference in the frequency of positive *H. pylori* stool Ag between malnourished

patients and control group of both sexes and different age group. Malnourished patients older than 12 months have significantly higher frequency of positive *H. pylori* stool Ag (p < 0.05). There was no statistically significant difference between cases and control group regarding feeding pattern, (p > 0.05). The frequency of *H. pylori* infection is significantly higher among children in both groups who were not fed breast milk (p > 0.05).

 Table 4.2. Distribution of *H. pylori* stool Ag results according to age, sex and breast feeding history

		Positive Hps Ag				p-value
Variables		С	Cases		ntrol	
		No.	%	No.	%	
Sex	Male	8	33.3	6	40	0.329
	Female	16	66.7	9	60	
Ages	2-6	6	25	5	33.3	0.133
Months	>6-12	5	20.8	4	26.7	
	>12-36	13	*54.2	6	40	

For each group P=0.002 **p<0.013

H. pylori stool Ag result according to nutritional status

Most cases (54.2%) of positive *H. pylori* stool Ag had severe malnutrition (statistically significant result). Table 4-3

Table 4.3 Relation	of nutritional status	with	result	of H.	pylori
	stool Ag				

Variables	Positive H	Ips Ag	Negat	p-	
	No.	%	No.	%	value
Severe malnutrition (29)	13	54.2	16	37.2	
Moderate malnutrition	11	45.8	27	62.6	0.015
(38)					
Total (67)	24	100	43	100	

H. pylori stool Ag result according to clinical presentation and past medical illness

Table 4-4 shows higher frequency of positive *H. pylori* stool Ag result in malnourished cases presenting with diarrhea and vomiting or both (75%) with statistically significant difference p < 0.05. Malnourished patients with history of recurrent diarrhea have 50% positive *H. pylori* stool Ag result and 41.9% of cases with previous hospitalization.

 Table 4.4. H. pylori stool Ag results according to presenting symptoms and past medical illness

Variables		Positive <i>Hp</i> s Ag		Negative <i>H</i> _l Ag	
Presenting symptoms	Total	No.	%	No.	%
Diarrhea and vomiting	19	8	42.1	11	57.9
Diarrhea	12	5	41.7	7	58.3
Vomiting	9	3	33.3	6	66.7
Chronic diarrhea	5	2	40	3	60
Poor weight gain	11	3	27.3	8	72.7
pneumonia	7	2	28.6	5	71.4
Fever	4	1	25	3	75
Total	67	24	35.8	43	64.2
Past medical illness					
Recurrent diarrhea	25	14	56	11	44
previous hospitalization	31	13	41.9	18	58.1

P = 0.03

Logistic regression analysis

The whole variables included in the study were subjected to logistic regression analysis to adjust the possible confounders to know the variables that are associated with *H. pylori* infection.

Table 4-5 shows that age, sex, history of breast feeding, and severity of malnutrition are not associated with result of *H. pylori* stool Ag positivity; presenting symptoms especially gastro-intestinal symptoms are independent risk factor associated with *H. pylori* stool Ag positivity.

 Table 4.5. Logistic regression of selected variables with positive

 Hps Ag result

Variables	OR	p-	95% CI
variables		value	Upper Lower
Age	0.551	0.155	0.264 1.146
Sex	0.528	0.366	0.161 1.736
Breast feeding	0.546	0.144	0.168 1.779
malnutrition	2.650	0.143	0.818 8.584
Presenting symptoms	3.438	0.044	1.080 10.950

DISCUSION

In developing countries, *H.pylori* is an infection acquired early in childhood causing chronic diarrhea and malnutrition. (Tafiar et al., 2006) All malnourished patients admitted to NRC were assessed for *H. pylori* infection by *H. pylori* stool Ag (*HpSA*). HpSA is non invasive test with high sensitivity and specificity for detection of *H.pvlori* infection as proved by many studies as in study in Tehran (100%, 83.4%) (Falsafi et al., 2005) and in Istanbul (98%, 100%) (Gulcan et al., 2005) respectively. Higher frequency of malnourished females admitted to NRC (58.2%) because probably female numbers more than males in the society. This result is similar to study carried out by Firas et alt in Basra, (Fadhil and Issa 2011) in contrast to a study done by Sunguya et al. (2006) in Tanzania which shows admitted malnourished males more than females. (Sunguya et al., 2006) Regarding age of malnourished patients: more than 60% of patients were younger than 12months. This result was similar to a study carried in Babylon by Muder et al. (Noor et al., 2009) this may be caused by absence of breast feeding, early weaning and in proper food preparation. Moderately malnourished children admitted to nutritional rehabilitation ward were more than severe malnourished patients because number of moderate malnourished children in the society is more than severe malnutrition. This result is similar to study done in Basra by Firas et al. (2011)

Malnourished patients with absence of breast feeding were more than with breast feeding. Same result was obtained by Abushray in Karbala (Abushray 2009) but in contrast to a study carried out in Basra by Saleem which shows that breast feeding is more common feeding pattern in children younger than 2 years, (Saleem 2006) This may be explained by that; availability of artificial milk and poor education of mothers about benefit of breast feeding. Approximately 2/3 of malnourished patients presented with gastrointestinal symptoms as diarrhea, vomiting and chronic diarrhea. More than 50% of malnourished patients presented with diarrhea. The relationship between diarrhea and malnutrition is bidirectional; diarrhea leads to malnutrition while malnutrition aggravates the course of diarrhea. Many factors contribute to the detrimental effect of diarrhea on nutritional status. These include reduced intake (due to anorexia, vomiting), maldigestion, malabsorption, increase nutrient losses, and the effects of inflammatory response. (Nel et al., 2010) Malnutrition increase risk of diarrhea due to many factors includes alteration of villus and crypt architecture, alter intestinal barrier function, and compromise innate immune barrier (Guerrant et al., 2008). Females show higher percentage of positive HpsAg, although not significantly different from males. The cause is unknown. This finding was similar to study carried out in Nairobi and west Iran by (Langat et al., 2006; Soltani et al., 2013) and in contrast to a study done by Elin et alin Uganda which shows high prevalence of H. pylori infection in males. (Hestivik et al., 2010) Malnutrition is risk factor for infection. Both acquired immunity (lymphocyte function) as well as innate host defense mechanisms (macrophages and granulocytes) is affected in severely malnourished patients. (Schaible and Kaufmann 2007) Malnourished children have higher frequency of H.pylori infection (35.8%) than control group (10.8%). Same result was reported in a study by Sullivan et al in Gambia which find higher prevalence of H.pylori infection in malnourished children. (Sullivan et al., 2012) But in contrast to a study in Guatemala by Quinonez et al. (1999) which shows no significant association between H.pvlori infection and malnutrition. (Sarker et al., 1997) Higher frequency of positive HpsAg in malnourished infants older than 12 months, the possible explanation is that may be related to the gastric mucosal damage caused by initial H. pylori infection which then lead to facilitated and sustained infection with H. pylori. (Sarker et al., 1997) Same result was obtained by Elin et al. in Uganda (Hestivik et al., 2010) but in contrast to a study carried out in Egypt by abdollah et al. which reveals high frequency of H. pylori infection in young infants. (Tafiar et al., 2006)

H. pylori infection predisposes children to the development of malnutrition and growth failure. The mechanism of this effect may include transient loss of gastric acid barrier during vulnerable periods as during the introduction of weaning food (Sarker et al., 1997). In current study severely malnourished patients have higher frequency of H. pylori infection; similar results obtain in study carried out by Thomas et al in Gambian. (Sarker et al., 1997) In this study absence of breast feeding enhance infection with H. pylori, this is possibly explained by absence protective effect of breast feeding against H. pylori infection. The possible mechanisms enrolled in this Protection may be due to the lactoferrin in human milk which binds to H. pylori liposaccharide inactivating the microorganism (Thomas et al., 2004). Same result obtained from study carried out in Japan by Okada et al. (2001) but other studies failed to find such protective role in Brazil by Rodrigues et al. (2006) and in Tabriz by Mandana (Rafeey et al., 2010).

Because *H.pylori* infection is accompanied with hypochlorhydria which facilitates acquisition of other enteric pathogens due to removal of the gastric acid barrier which then results in diarrheal disease and malnutrition (Windle *et al.*, 2007), so this study reveal higher percentage of positive

HpsAgin malnourished patients with diarrhea (58.3%). Same result concluded by Douglas et al in Peru (Rodrigues *et al.*, 2006), and differs from a study carried out in Cuba by Ruiz *et al.* which show no association between H. pylori infection and diarrhea. (Alvarez *et al.*, 2005)

REFERENCES

- Abushray AAJ. 2009. Malnutrition in children admitted to Karbala pediatricteaching hospital: prevalence and associated risk factors. *Kufa Med Journal*, 12(2): 165-176.
- Alvarez R, Vladimir, Julia M, Maria S, Triana LH, Manuel. 2005. Helicobacter pylori and diarrhea in children. *Rev. Cubana. Hig. Epidemiol.*, 43(2): 1561-3003.
- Blaser M J. 2006. Indigenous microbes and the ecology of human diseases. *EMBO Reports*, 7 (10): 956–960.
- Ertem D. 2011. Helicobacter pylori infection in children. *Journal of Pediatric Sciences*, 3(4): e102.
- Fadhil F, Issa S. 2011. Feeding Pattern of malnourished children admitted to nutritional rehabilitation center in Basra General Hospital. *Medical Journal of Basra* University, 29(1,2).
- Falsafi T, Valizadeh N, Sepehr S, Najafi M. 2005. Application of a stool antigen test to evaluate the incidence of *Helicobacter pylori* infection in children and adolescents from Tehran, Iran. *Clinical and Diagnostic Laboratory Immunology*, 12(9): 1094–1097.
- Guerrant RL, Oria RB, Moore SR, Oria MOB, Lima AAM. 2008. Malnutrition as an enteric infectious disease with long term effects onchild development. *Nutr Rev.*, 66(9): 487-505.Chapter Four References 38
- Gulcan EN, Varol A, Kutlu T, Cullu F, Erkan T, Adal E, et al. 2005. Helicobacter pylori stool antigen test. *Indian Journal of Pediatrics*, 72(8): 675-678.
- Hestivik E, Tylleskar T, Kaddu-Mulindwa DH, Ndeezi G, Grahnquist L, Olafsdottir E, *et al.* 2010. *Helicobacter pylori* in apparently healthy children aged 0-12 years in urban Kampala, Uganda. *BMC Gastroenterology*, 10: 62-68.
- http://www.WHO.int/nutgrowthdb/about/introduction/en/inde x5.html.Chapter Four References37
- Koletzko S, Jones NL, Goodman KJ, Gold B, Rowland M, Cadranel S, *et al.* 2011. Evidence-based guidelines from ESPGHAN and NASPGHAN for *Helicobacter pylori* infection in children. *JPGN*, 53: 230–243.
- Langat AC, Ogutu E, Kamenwa R, Simiyu DE. 2006. Prevalnce of *H.pylori* infection in children less than three years of age in health facilities in Nairobi province. *East African Medical Journal*, 83(9):471-477.
- Nel ED. Diarrhea and Malnutrion 2010. S Afr. J. Clin. Nutr., 23(1): 15-18.
- Noor MH, Abdul-Ameer A, Gafil B. 2009. Risk factors which contribute to malnutrition in children in Babylon Hospital for Maternity and Children. *Medical Journal of Babylon*, 6: 3-4.
- Okada M, Koike M. 2001. Breast feeding prevent *Helicobacter pylori* infection in early childhood. *Pediatr. Int.*, 43(6): 714-715

- Passaro DJ, Taylor DN, Meza R, Cabrera L, Gilman RH, Parsonnet J. 2001. Acute *Helicobacter pylori* infection is followed by increase in diarrheal disease among Peruvian children. *Pediatrics*, 108; 87-92.
- Quinonez JM, Chew F, Torres O, Begue RE. 1999. Nutritional status of *Helicobacter pylori* infected children in Guatemala as compared with un infected peers. *Am. J. Trop. Med. Hyg.*, 61(3): 395-398.
- Rafeey M, Shabestari MS, Rafiey A, Mostafiidy H, Najati N. 2010. Survey of *Helicobacter pylori* infection in infant. *Pakistan Journal of Biological Sciences*, 13(9): 460-462.
- Rodrigues MN, Queiroz DMM, Braga ABC, Rocha AMC, Eulailo EC, Baga LLBC. 2006. History of breast feeding and *Helicobacter pylori* infection in children: results of a community-based study northeastern Brazil. *Trans R. Soc. Trop. Med. Hyg.*, 100(5):470-975.
- Saleem MB. 2006. Complementary foods for children under two years of age and its relation to nutritional status and selected socio-demographic factors in Basra. *MJBU* 24(1,2): 33-44.
- Sarker SA, Davidsson L, Mahmud H, Walczyk T, Hurrell RF, Gyr N, et al. 2004. Helicobacter pylori infection, iron absorption, and gastric acid secretion in Bangladeshi children. Am. J. Clin. Nutr., 80(1): 149-153.
- Sarker SA, Mahalanabis D, Hildebrand P, Rahaman MM, Bardhan PK, Fuchs G, et al. 1997. Helicobacter pylori: Prevalence, Transmission, and Serum Pepsinogen II Conacentrations in Children of Poor Periurban Community in Bangladish. Clinical Infectious Disease, 25: 990-995.
- Schaible UE, Kaufmann SHE. 2007. Malnutrition and infection: complex mechanisms and global impacts. *Plos. Med.*, 4(5): 115-122.
- Soltani J, Amirzadeh J, Nahedi S, Shahsavari S. 2013. Prevalence of *Helicobacter Pylori* infection in children. *Iran J. Pediatr.*, 23(1): 13-18.
- Sullivan PB, Thomas JE, Wight DGD, Neale G, Eastham EJ, Corrah T, *et al.* 2012. Helicobacter pylori in Gambian children with chronicdiarrhea and malnutrition. *Archives of Disease in Childhood*, 65: 189-191.
- Sunguya BFP, Koola JI, Atkinson S. 2006. Infections associated severe malnutrition among hospitalized children in east Africa. *Tanzania Health Research Bulletin*, 8(3): 189-192.
- Tafiar A, Kibrisli E, Dallar Y. 2006. Seroprevalence of *Helicobacter pylori* in children with constitutional height retardation. *Turk. J. Gastroenterol.*, 17 (1): 7-12.
- Tafiar A, Kibrisli E, Dallar Y. 2006. Seroprevalence of *Helicobacter pylori* in children with constitutional height retardation. *Turk. J. Gastroenterol.*, 17 (1): 7-12.
- Thomas JE, James E G, Kleanthous H, Monath TP, Harding M, Coward WA, et al. 2004. Specific immunoglobulin A antibodies in maternal milk and delayed *Helicobater* pylori colonization in Gambian infants. Clin. Infec/ Dis., 39(8): 1155-1160.
- Windle HJ, Kelleher D, Crabtree JE. 2007. Childhood Helicobacter pyloriinfection and growth impairment in developing countries: A vicious cycle, 119(3): 754-759.
