AFLATOXICOSIS IN BROILER CHICKENS, AMELIORATION WITH MYCOSORB: A REVIEW

Wade, M.R. and Sapcota, D.

Department of Poultry Science, Post Graduate Institute of Veterinary and Animal Sciences, Akola, Maharashtra, India

2Department of Poultry Science, College of Veterinary Science, Khanapara, Guwahati, India

INTRODUCTION

Mycoxotins of importance in poultry are mainly produced by the fungi genera Aspergillus, Fusarium and Penicillia, at the pre-harvest, harvest and in storage or during feed processing whenever conditions are favorable. No region of the world escapes these silent killers and their negative impact on poultry productivity and human health is enormous (Devegowda, 2001; Devegowda and Aravind, 2002). Aflatoxins (AF) are a group of closely related biologically active mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus. They commonly occur as natural contaminants of poultry feeds (Sapcota et al., 2006). Among aflatoxins, AFB1 is an extremely hepato-toxic and carcinogenic compound (Girish and Devegowda, 2006). Aflatoxin B1 is more predominantly found than others and is the most toxic type to poultry and frequently contaminates animal’s feeds at low levels. The stability of B1 to thermal and chemical treatment increases its potential. Aflatoxins cause a variety of effects in poultry including decreased feed utilization, poor growth, egg production and break in immunity. Even small amounts of AFB1 in feeds may cause poor growth, hatchability and increase susceptibility to disease.

Aflatoxins are highly hepatotoxic, neurotoxic, teratogenic, carcinogenic imparting various deleterious effects on vital organs such as liver and kidney resulting in reduction of body growth, poor feed utilization and lowering immunogenesis leading to mortality (Girish and Devegowda, 2006, Kubena et al., 1990). Affected birds show poor vaccine response and low antibody titre, as both cellular and humoral immunities are affected (Corrier, 1991).

Extensive research has been conducted as regards to prevention and control of aflatoxicosis by the use of various chemicals or dietary supplementation of certain agents like nutritional, physical, chemical and biological approaches have been proposed to detoxify mycotoxin contaminated feed and feedstuffs hydrated sodium calcium aluminosilicate (HACAS) (Jindal et al., 1993). Bentonite (Rosa et al., 2001), Zeolite (Miazzo et al., 2000), activated charcoal (AC) (Edrington et al., 1997), inorganic sorbents (Baily et al., 1998) and a blend of organic acids and aluminosilicates (Mahesh and Devegowda, 1996) have shown considerable promise in detoxifying aflatoxins in contaminated feeds. Mycosorb (Esterified glucomannan) extracted from the yeast cell wall was shown to bind with aflatoxin, ochratoxin and T-2 toxin, individually and combined (Raju and Devegowda, 2000). Additions of esterified glucomannan at 0.5 or 1.0 g/kg to diets supplying.
A glucan polymer product has protected swine (Swamy et al., 2002) and broilers (Swamy et al., 2004) against some of the detrimental effects of multiple mycotoxins, but without restoring growth rate. Yeast cell walls Cell walls derived from the Saccharomyces cerevisiae yeast are also used as a dietary mycotoxin adsorbing agent. Yeast cell walls consist almost entirely of proteins and carbohydrates. The carbohydrate fraction is composed primarily of glucose, mannose, and N-acetylglucosamine. Glucans and mannans, the two main sugars, are found in about equal concentrations in Saccharomyces cerevisiae. Yeast mannan chains of various sizes are exposed on the external surface and are linked to cell wall proteins.

Body weight and Weight Gain

The growth depression was found to be improved when Mycosorb (1 g per kg) was incorporated in the aflatoxin (300 ppb) treated groups from 3rd week onwards and the amelioration was found to be 63.57 per cent, @ 1 g /kg of Mycosorb in the diet (Wade, 2008). Mogadam and Azizpour, (2011) found in his study, that the addition of yeast glucomannan was effective on body weight gain and the highest result was significantly obtained compared with the negative control group during day 7 to 42 (P < 0.05) when yeast glucomannan was added at of 0.1% of feed to the AF containing diets. Arvind et al. (2003) reported that the contaminated diet (aflatoxin 168 ppb, ochratoxin 8.4 ppb, zearalenone 54 ppb, and T-2 toxin 32 ppb) supplemented with E-GM significantly countered (8.84%) the growth-depressing effects of the contaminated diet.

Raju and Devegowda (2000) studied the influence of modified glucomannan (Mycosorb) on performance in broilers exposed to aflatoxin (0.3 mg kg⁻¹) and reported that addition of Mycosorb (1 g kg⁻¹ diet) increased body weight by 2.26%. Kamalzadeh et al. (2009) observed that the live weight of birds in groups given diets with 0.5, 1 and 1.5 g Mycosorb kg⁻¹ increased by 2.72, 6.46 and 7.44%, respectively when the feed was contaminated with aflatoxin. Supplementation of glucomannan-containing yeast product (1kg/ton) to the aflatoxin (2mg/kg) contaminated diets significantly alleviated the growth depression effects, Girish and Devegowda (2006). Yildirim et al. (2011) observed improved weight gain in broilers on EGM incorporated in aflatoxin contaminated diet. The beneficial effects of yeast glucomannan on performance of broilers have been reported earlier by Raju and Devegowda (2000), Swamy et al. (2002), Aravind et al. (2003), Karaman et al. (2005) Girish and Devegowda (2004) and Basmacoglu et al. (2005). Although the precise mode of action of E-GM is not known, it is hypothesized that E-GM might trap the mycotoxin molecule in its glucomannan matrix and prevent toxin absorption from the gastrointestinal tract (Raju and Devegowda, 2000). These beneficial effects of Mycosorb might be attributed to its ability to trap the mycotoxins in the gastrointestinal tract (Girish and Devegowda, 2006).

Feed consumption and feed efficiency

The dietary addition of Mycosorb as a counteracting agent in aflatoxin (300 ppb) fed group improve the anorexic condition reflecting in higher feed consumption.

Though ameliorative effect of dietary Mycosorb was varying, the best effect was observed in the groups fed @ dose 1.0 g/kg (Wade, 2008). Raju and Devegowda (2000) reported that supplementation of 1 g kg⁻¹ Mycosorb to the diet containing 0.3 mg aflatoxin kg⁻¹ caused 1.6% increase in feed intake of broiler chicks. Similar result has been recorded by Girish and Devegowda (2006). Improvement of feed conversion ratio was observed when aflatoxin added diet was fortified with Mycosorb as counteracting agent (Wade, 2008). This finding is in agreement with Girish and Devegowda (2004). The beneficial effect might be due to the ability of Mycosorb to trap the aflatoxin irreversibly (Devegowda et al., 1998).

Karaman et al. (2005) was observed higher feed intake (7.4%), body weight gain (24%) and better feed conversion ratio (13.7%) were obtained with 0.1% yeast glucomannan (1 g Mycosorb kg⁻¹)in aflatoxin containing diet at 0.5 and 1 g kg⁻¹. Arvind et al.(2003) feeding the contaminated diet also resulted in significant reduction in feed intake(7.11%)and poorer feed efficiency (2.3%). Further, supplementation of E-GM to the contaminated diet effectively improved feed intake (5.06%) and feed efficiency (3.25%). Chickens fed control diet with E-GM performed significantly better (3.48%) than those on the basal diet alone. Ghahri et al. (2010) observed improved feed efficiency in aflatoxin containing diet, when supplemented with the estriified glucomannan. Feeding broilers with diets containing aflatoxin (2 mg/kg) and T-2 toxin (1 mg/kg), significantly reduced feed intake, weight gain and feed efficiency. Modified glucomannan (1 kg/ton of feed) significantly improved body weight, feed intake, suggesting action against both aflatoxin and T-2 toxin.

Nutrient Retention

Dry mater (DM) retention is significantly (P<0.05) affected due to aflatoxicosis (Ahmed, 2005). The improvement in the DM retention was noticed after the dietary inclusion of Mycosorb(1g/kg) in aflatoxin (300ppb) fed birds (Wade,2008). Gogoi (2003) reported the protein retention was reduced due to aflatoxicosis (300 ppb) to the extent of 7 per cent. Wade,(2008) fortified Mycosorb(1g/kg) in the diet of aflatoxin (300ppb) fed birds, significantly improved the ether extract retention. Karaman et al. (2010) observed improved feed efficiency in aflatoxin containing diet, when supplemented with the estriified glucomannan. Feeding broilers with diets containing aflatoxin (2 mg/kg) and T-2 toxin (1 mg/kg), significantly reduced feed intake, weight gain and feed efficiency. Modified glucomannan (1 kg/ton of feed) significantly improved body weight, feed intake, suggesting action against both aflatoxin and T-2 toxin.
However, when toxin fed broilers were treated with Mycosorb the calcium and phosphorus retention was improved and the value was found to be comparable with that of control group Wade, (2008).

Carcass Trait

Studies on carcass characteristics of broiler revealed that the dressing yield was reduced significantly (P<0.05) Ramakrishna et al. (2005), Churchil et al. (2001), Mani et al. (2001), Bhaskar et al. (2002), Gogoi (2003), Ahmed (2005). Since the dietary aflatoxicosis significantly reduced the body weight of broilers the depression in dressed yield must have been as a sequence to this. However, inclusion of Mycosorb in the aflatoxin contaminated diet improved the dressed yield. Though the dressing yield among the Mycosorb fed groups were comparable, however, incorporation of higher dose (g/kg) of this binder gave dressing yield matching to that of control group (Wade, 2008). Aflatoxicosis in broilers reduced eviscerated yield were reported by, Bhaskar et al (2002), Gogoi (2003) and Ahmed (2005). Since dietary aflatoxicosis significantly reduced the body weight of broilers, the depression in eviscerated yield must have been as a consequent to this. Addition of Mycosorb in toxin mixed diet of boilers improved the condition significantly (P<0.05) and the results followed the same trend to that of dressed yield. The giblet yield increased significantly in aflatoxin (300 ppb) alone fed birds as compared to control group. This might be due to the enlargement of liver, proventriculus and gizzard which are the component of giblet. Similar findings were reported by Mani et al., Gogoi (2003) and Ahmed (2005) and Sapcota et al. (2006c,d). However, the giblet weight was corrected when the intoxicated birds were offered Mycosorb in the diet. Among the Mycosorb treated groups both medium and higher doses (0.5g and 1 g/kg) showed the best amelioration reflecting in total counteraction (Wade, 2008)

Conclusions

It could be concluded that aflatoxin B1 in the broiler diet can influence the performance and feed efficiency, nutrient retention and carcass trait. The addition of a Mycosorb (estrified glucomannan) could significantly reestablish harmful effects on broilers.

REFERENCES
