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Sustainable agriculture is vitally important in today’s world because it offers the potential to meet our 
future agricultural needs, something that conventional agriculture will not be able to do. Soil 
microorganisms with bene
to conventional agricultural practice. Plant 
occurring soil bacteria that aggressively colonize plant root
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however, recent work by several groups shows that PGPR also elicit so
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INTRODUCTION 
 
The soil attached to the root system is  a hot spot of microbial 
abundance and  the activity is due to the presence of root 
exudates and rhizodeposits (Smalla et al., 
exudates attract microbes and feed them and, in turn, the plants 
often benefits from the microbes. Soil microorganisms play a 
vital role in soil processes which have direct bearing on 
productivity of crop plants. Effective functioning of introduced 
bioinoculants is possible only by exploring the large pool
of indigenous soil microbes (Hill et al
microorganisms are attracted by nutrients exuded from plant 
roots and this “rhizosphere effect” was first described by 
Hiltner (Hiltner, 1904). The rhizosphere and rhizoplane are 
colonized more intensively by microorganisms than the other 
regions of the soil. Some of these microorganisms not only 
benefited from the nutrients secreted by the plant roots but also 
beneficially influence the plants, resulting in a stimulation of 
their growth. For instance, rhizobacteria can fix atmospheric 
nitrogen, which is subsequently used by the plants, thereby 
improving plant growth in the soil deficient of nitrogen. Other 
rhizobacteria can directly promote the plant growth by the 
production of hormones. These rhizobacteria positively 
influence plant growth and health and often referred as 
Growth Promoting Rhizobacteria (PGPR).  
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ABSTRACT 

Sustainable agriculture is vitally important in today’s world because it offers the potential to meet our 
future agricultural needs, something that conventional agriculture will not be able to do. Soil 

oorganisms with beneficial activity on plant growth and health represent an attractive alternative 
to conventional agricultural practice. Plant Growth-Promoting Rhizobacteria 
occurring soil bacteria that aggressively colonize plant roots and benefit plants by providing growth 
promotion. PGPR are associated with plant roots and augment plant productivity and immunity; 
however, recent work by several groups shows that PGPR also elicit so
tolerance’ to salt and drought. PGPR might also increase nutrient uptake from soils, thus reducing the 
need for fertilizers and preventing the accumulation of nitrates and phosphates in agricultural soils.
Scientific researches involve multidisciplinary approaches to understand adapt
on plant physiology and growth, induced systemic resistance, biocontrol of plant pathogens, bio 
fertilization, and potential green alternative for plant productivity, viability of co inoculating, plant 
microorganism interactions, and mechanisms of root colonization. 
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Direct use of microorganisms to promote plant growth and to 
control plant pests continues to be an area of rapidly expanding 
research. Rhizosphere colonization is one of the fi
the pathogenesis of soil borne microorganisms. It is also crucial 
for the microbial inoculants to be used as biofertilizers, 
biocontrol agents, phytostimulators, and bioremediators. 
Pseudomonas spp. is often used as model root
bacteria (Lugtenberg et al., 2001). Motile rhizobacteria may 
colonize the rhizosphere more profusely than the non
organisms resulting in better rhizosphere activity and nutrient 
transformation. They also eliminate deleterious rhizobacteria 
from the rhizosphere by niche exclusion thereby better plant 
growth (Weller, 1988). The present review is an effort to 
elucidate the concept of rhizobacteria in the current scenario 
and their Underlying mechanisms of plant growth promotion 
with recent updates. The lates
applications of these beneficial rhizobacteria in different agro
ecosystems have been presented explicitly to garner broad 
perspectives regarding their functioning and applicability.
 
Rhizosphere 
 
The root system, which was tr
anchorage and uptake of nutrients and water, is in fact a 
chemical factory that mediates numerous underground 
interactions (Badri et al., 2009). The narrow zone of soil 
directly surrounding the root system is referred to as 
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Direct use of microorganisms to promote plant growth and to 
control plant pests continues to be an area of rapidly expanding 
research. Rhizosphere colonization is one of the first steps in 
the pathogenesis of soil borne microorganisms. It is also crucial 
for the microbial inoculants to be used as biofertilizers, 
biocontrol agents, phytostimulators, and bioremediators. 
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rhizosphere (Walker et al., 2003), while the term 
‘rhizobacteria’ implies a group of rhizosphere bacteria 
competent in colonizing the root environment (Kloepper 
1991). Plant roots also synthesize, accumulate, and secrete a 
diverse array of compounds (Walker et al
compounds secreted by plant roots act as chemical attractants 
for a vast number of heterogeneous, diverse and actively 
metabolizing soil microbial communities. The composition of 
these exudates is dependent upon the physiolog
species of plants and microorganisms (Kang 
These exudates also promote the plant-bene
interactions and inhibit the growth of the competing plant 
species (Nardi et al., 2000). Largely, three separate but 
interacting components are recognized in the rhizosphere: the 
rhizosphere (soil), the rhizoplane, and the root itself. Of these, 
the rhizosphere is the zone of soil influenced by roots through 
the release of substrates that affect microbial activity. The 
rhizoplane, on the other hand, is the root surface including the 
strongly adhering soil particles while the root itself is a 
component of the system, because many micro
endophytes) also colonize the root tissues (Barea 
 
Plant growth promoting Rhizobacteria 
 
Different bacterial genera are vital components of soils. They 
are involved in various biotic activities of the soil ecosystem to 
make it dynamic for nutrient turn over and sustainable for crop 
production (Ahemad et al., 2009; Chandler 
bacteria lodging around/in the plant roots (rhizobacteria) are 
more versatile in transforming, mobilizing, solubilising the 
nutrients compared to those from bulk soils (Hayat 
2010). Therefore, the rhizobacteria are the dominant deriving 
forces in recycling the soil nutrients and consequently, they are 
crucial for soil fertility (Glick, 2012). The plant growth 
promoting rhizobacteria (PGPR), are characterized by the 
following inherent distinctiveness’s: 
 
(i)  They must be proficient to colonize the 
(ii)  They must survive, multiply and compete with other 

microbiota; at least for the time needed to express their 
plant growth promotion/protection activities.

(iii)  They must promote plant growth (Kloepper, 1994
 

 
Some common examples of PGPR genera exhibiting plant 
growth promoting activity are: Pseudomonas,
Azotobacter, Bacillus, Burkholdaria, Enterobacter, Rhizobium, 
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crucial for soil fertility (Glick, 2012). The plant growth 
promoting rhizobacteria (PGPR), are characterized by the 

They must be proficient to colonize the root surface. 
They must survive, multiply and compete with other 
microbiota; at least for the time needed to express their 
plant growth promotion/protection activities. 

Kloepper, 1994). 

 

Some common examples of PGPR genera exhibiting plant 
Pseudomonas, Azospirillum, 

Burkholdaria, Enterobacter, Rhizobium, 

Erwinia, Mycobacterium, Mesorhizobium, Flavobacterium, 
etc. 
 
Mechanisms of plant growth promotion
 
PGPR are beneficial for plant growth and also referred as 
Increasing Bacteria (YIB). They can affect plant growth and 
yield in a number of ways and enhancement 
reproductive growth is documented in a range of crops like 
cereals, pulses, ornamentals, vegetables, plantation crops and 
some trees. Treatments with PGPR increase germination 
percentage, seedling vigour, emergence, plant stand, root and 
shoot growth, total biomass of the plants, seed weight, early 
flowering, grains, fodder and fruit yields etc., (van Loon 
1998; Ramamoorthy et al., 2001).
have been postulated to explain how 
Rhizobacteria (PGPR) stimulates
mechanisms are broadly categorized as 
(Glick, 1995). PGPR directly contribute to the plant growth are 
phytohormone production like auxins, cytokinins and 
gibberellins, enhancing plant nutrition by solubilization of 
minerals like phosphorus and iron, production of siderophores 
and enzymes, lowering of ethylene levels and induction of 
systemic resistance (Bhattacharyya and Jha, 2012). PGPR 
indirectly benefit the plant growth by t
deleterious microorganisms or root pathogens that inhibit plant 
growth, including antibiotic production, parasitism, 
competition for nutrients and niches within the rhizosphere, 
synthesis of extracellular enzymes to hydrolyze the fungal ce
wall, decreasing pollutant toxicity (Bhattacharyya and Jha, 
2012; Podile and Kishore , 2006;
 

Fig. 1. Mechanism of plant growth promotion by rhizobacteria

Direct mechanisms 
 
Nitrogen fixation 
 
Nitrogen (N) is the most vital 
productivity. Although, there is about 78% N
atmosphere, it is unavailable to the growing plants. The 
atmospheric N2 is converted into plant
Biological N2 fixation (BNF) which changes nitrogen to 
ammonia by nitrogen fixing microorganisms using a complex 
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yield in a number of ways and enhancement of vegetative and 
reproductive growth is documented in a range of crops like 
cereals, pulses, ornamentals, vegetables, plantation crops and 
some trees. Treatments with PGPR increase germination 
percentage, seedling vigour, emergence, plant stand, root and 
shoot growth, total biomass of the plants, seed weight, early 
flowering, grains, fodder and fruit yields etc., (van Loon et al., 
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have been postulated to explain how Plant Growth-Promoting 
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mechanisms are broadly categorized as Direct or indirect 
(Glick, 1995). PGPR directly contribute to the plant growth are 
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minerals like phosphorus and iron, production of siderophores 
and enzymes, lowering of ethylene levels and induction of 
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synthesis of extracellular enzymes to hydrolyze the fungal cell 
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enzyme system known as nitrogenase (Kim and Rees, 1994). 
Biological nitrogen fixation occurs, generally at mild 
temperatures, by nitrogen fixing microorganisms, which are 
widely distributed in nature (Raymond et al., 2004). Zhang et 
al., 1996 recognized the species of PGPR bacteria, which 
increased the growth of Legumes plant, root development and 
nitrogen fixation especially in the temperature lower than the 
optimized condition of the Rzts-Root Zone temperature. 
Nitrogen-fixing (diazotrophic) bacteria fix atmospheric 
nitrogen by means of the enzyme nitrogenase, a two 
component metalloenzyme composed of (a) dinitrogenase 
reductase,a dimer of two identical subunits that contains the 
sites for Mg ATP Binding and hydrolysis ,and supplies the 
reducing power to the dinitrogenase ,and (b) the dinitrogenase 
component that contains a metal cofactor (Dean and Jacobson 
1992). 
 

 
 

Figure 2 
 
The nodulation process (a) Interaction of rhizobial rhicadhesin 
with host lectins and rhizobial attachment with root cells. (b) 
Excretion of nod factors by rhizobia causes root hair curling. 
(c) Rhizobia penetrate root hair and form an infection thread 
through which they penetrate the cortical cells and form 
bacteroid state thereby nodules are formed.Nitrogen fixing 
organisms are generally categorized as (a) symbiotic N2 fixing 
bacteria including members of the family rhizobiaceae which 
forms symbiosis with leguminous plants (e.g. rhizobia) 
(Ahemad and Khan, 2012d and Zahran, 2001) and non-
leguminous trees (e.g. Frankia) and (b) non-symbiotic (free 
living, associative and endophytes) nitrogen fixing forms such 
as cyanobacteria (Anabaena, Nostoc), Azospirillum, 
Azotobacter, Gluconoacetobacter diazotrophicus and Azocarus 
etc. (Bhattacharyya and Jha, 2012). However, non-symbiotic 
nitrogen fixing bacteria provide only a small amount of the 
fixed nitrogen that the bacterially-associated host plant requires 
(Glick, 2012). Symbiotic nitrogen fixing rhizobia within the 
rhizobiaceae family (α-proteobacteria) infect and establish 
symbiotic relationship with the roots of leguminous plants. The 
establishment of the symbiosis involves a complex interplay 
between host and symbiont (Giordano and Hirsch, 2004) 
resulting in the formation of the nodules wherein the rhizobia 
colonize as intracellular symbionts (Fig. 2). 
 
Phosphate Solubilization 
 
Since P is an essential macronutrient for plant growth and has 
only limited bioavailability, it is considered to be one of the 
elements that limit plant growth (Feng et al., 2004). P in soil is 
present in two main insoluble forms: mineral Forms such as 
apatite, hydroxyapatite, and oxyapatite, and organic                 
forms including inositol phosphate (soil phytate), 
phosphomonoesters, phosphodiesters, and phosphotriesters 
(Khan et al., 2007). Solubilisation and mineralization of P by 
Phosphate-Solubilizing Bacteria (PSB) is one of the most 
important bacterial physiological traits in soil biogeochemical 
cycles (Fig.3). (Jeffries et al., 2003), as well as in plant growth  

Promotion by PGPB (Rodriguez and Fraga 1999;               
Richardson 2001). Bacterial genera like Azotobacter,             
Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, 
Flavobacterium, Microbacterium, Pseudomonas, Rhizobium 
and Serratia are reported as the most significant phosphate 
solubilizing bacteria (Bhattacharyya and Jha, 2012). Typically, 
the solubilization of inorganic phosphorus occurs as a 
consequence of the action of low molecular weight organic 
acids which are synthesized by various soil bacteria (Zaidi              
et al., 2009). Conversely, the mineralization of organic 
phosphorus occurs through the synthesis of a variety of 
different phosphatases, catalyzing the hydrolysis of phosphoric 
esters (Glick, 2012). Importantly, phosphate solubilization and   
mineralization can coexist in the same bacterial strain (Tao et 
al., 2008). Besides providing P to the plants, the PS bacteria 
also augment the growth of plants by stimulating the efficiency 
of BNF, enhancing the availability of other trace elements 
(such as iron, zinc) and by synthesizing important plant growth 
promoting substances (Ponmurugan and Gopi, 2006; Mittal et 
al., 2008). To make this form of P available for plant nutrition, 
it must be hydrolyzed to inorganic P by means of acid and 
alkaline phosphatase enzymes. Because the pH of most soils 
ranges from acidic to neutral values acid phosphatases should 
play the major role in this process (Rodríguez and Fraga, 
1999). The possibility of enhancing P uptake of crops by 
artificial inoculation with P-solubilising strains of rhizobacteria 
presents an immense interest to agricultural microbiologists. 
 

 
Fig. 3. Solubilization and mineralization of P 

 
Sequestering of iron by production of siderophores 
 
Iron-chelating molecules termed siderophores are generally 
less than 1000 molecular weight and are produced by many 
microorganisms. Iron is an essential micronutrient for plants as 
it serves as a cofactor of many enzymes with redox activity and 
it is required in a number of major physiological processes like 
N2fixation, photosynthesis, respiration, etc. To meet their iron 
requirement, microorganisms and plants have evolved specific 
mechanisms to chelate insoluble iron through the release of 
siderophores and uptake of iron-siderophore complexes 
through specific outer membrane receptor proteins (Sharma 
and Johri, 2003). These siderophores can be of different types: 
hydroxamates, phenol-catecholates, and carboxylates (Podile 
and Kishore, 2006). The synthesis of siderophores in bacteria is 
induced by the low level of Fе3+ and in acid soil, where 
solubility and availability grow, their protective effect comes 
down. Microbial siderophores in the rhizosphere are frequently 
associated with biocontrol activities and not with plant 
nutrition (Vessey, 2003). (Fig 4-5). In a report, Glick et al., 
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1995 measured the 11 pseudomonas strains ability in 
increasing the canola root length under the gnotobiotic 
conditions.  
 

 
 

Fig.  4. The siderophores shuttle iron delivery mechanism. 
Adopted from Stintizi et al. (2002) 

 

 
 

Fig. 5. Impact of microbially secreted siderophores on 
plant growth 

 
Synthesis of Plant Hormones 
 
Phytohormones are signal molecules acting as chemical 
messengers and play a fundamental role as growth and 
development regulators in the plants. Phytohormones are 
organic compounds that in extremely low concentrations 
influence biochemical, physiological and morphological 
processes in plants, and their synthesis is finely regulated 
(Fuentes-Ramírez and Caballero-Mellado, 2006). With the 
production of different phytohormones like indole-3-acetic acid 
(IAA), gibberellic acid and cytokinins PGPR can increase root 
surface and length and promote in this way plant development 
(Kloepper et al., 2007). IAA (auxin) is the most quantitatively 
important phytohormone produced by PGPR, and treatment 
with auxin-producing rhizobacteria increased the plant growth 
(Vessey, 2003). Production of other phytohormones by 
biofertilizing-PGPR has been identified, but not nearly to the 
same extent as bacteria which produce IAA (Vessey, 2003). A 
few PGPR strains were reported to produce cytokinins and 
gibberellins (gibberellic acid) (Gutiérrez-Mañero et al., 2001, 
Vessey, 2003). Bacteria like Azospirillum and Pseudomonas 
spp. produce cytokinins and gibberellins, in addition to IAA 
(Gaudin et al., 1994). Studies of Glick (1998) showed that 
many PGPR have the capability to produce 1-
aminocyclopropane-1-carboxylate (ACC) deaminase, an 
enzyme which cleaves ACC, the immediate precursor of 
ethylene in the biosynthetic pathway for ethylene in plants 
(Glick et al., 1998). 

In Direct mechanisms 
 

Biocontrol 
 

The application of microorganisms to control diseases, which 
is a form of biological control, is an environment-friendly 
approach. In general, competition for nutrients, niche 
exclusion, induced systemic resistance and antifungal 
metabolites production are the chief modes of biocontrol 
activity in PGPR (Lugtenberg and Kamilova, 2009). The major 
indirect mechanism of plant growth promotion in rhizobacteria 
is through acting as biocontrol agents (Glick, 2012). Many 
rhizobacteria have been reported to produce antifungal 
metabolites like, HCN, phenazines, pyrrolnitrin, 2, 4-
diacetylphloroglucinol, pyoluteorin, viscosinamide and tensin 
(Bhattacharyya and Jha, 2012). Interaction of some 
rhizobacteria with the plant roots can result in plant resistance 
against some pathogenic bacteria, fungi, and viruses. This 
phenomenon is called induced systemic resistance (ISR) 
(Lugtenberg and Kamilova, 2009).  
 
Moreover, ISR involves jasmonate and ethylene signaling 
within the plant and these hormones stimulate the host plant’s 
defense responses against a variety of plant pathogens (Glick, 
2012). A.brasilense cells contain a low molecular-weight 
compound that inhibits germination and growth of the radicle 
of Egyptian broom rape seeds (Orobanche aegyptiaca), a 
specific weed parasite of sunflower (Dadon et al., 2004). 
Azospirillum spp. inhibited germination of the parasitic striga 
weed (witchweed) seeds (Striga hermonthica) that infest fields 
of tropical sorghum, thereby promoting growth of sorghum 
(Bouillant et al., 1997).  Based on their mechanism of action, 
PGPR can be categorized into three general forms (Table 1) 
such as biofertilizer (a substance that contains live 
microorganisms with biological nitrogen fixation and 
phosphorus solubilisation capabilities), Phytostimulator 
(microorganism with the ability to produce phytohormones) 
and biopesticide (microorganisms that promote plant growth by 
controlling phytopathogenic agents) (Bhattacharyya and Jha, 
2012). 
 
Mitigation of abiotic stresses by PGPR 
 
Soil salinity in arid regions is frequently an important limiting 
factor for cultivating agricultural crops. Although many 
technologies have been implicated in the improvement of salt 
tolerance, only PGPR-elicited plant tolerance against salt stress 
has been previously studied (Mayak et al., 2004). IST to salt 
stress was also noted in a new study with Arabidopsis using 
Bacillus subtilis GB03, a species that has previously been used 
as a commercial biological control agent (Zhang et al., 2008). 
Term ‘induced systemic tolerance’ (IST) for PGPR-induced 
physical and chemical changes in plants that result in enhanced 
tolerance to abiotic stress. IST elicited by PGPR against 
drought, salt and fertility stresses underground (root) and 
aboveground (shoot). Broken arrows indicate bioactive 
compounds secreted by PGPR; solid arrows indicate plant 
compounds affected by bacterial components. Some PGPR 
strains, indicated in red on the plant roots, produce cytokinins 
and antioxidants such as catalase, which result in ABA 
accumulation and ROS degradation, respectively and 
Degradation of the ethylene precursor ACC by bacterial ACC 
deaminase releases plant stress and rescues normal plant  

 3866                                          Meenakshi Nandal and Rajni hooda, Plant growth promoting rhizobacteria: A review article 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

growth under drought and salt stresses and
emitted by PGPR down regulate hkt1 expression in roots but 
up regulate it in shoot tissues, orchestrating lower Na
and recirculation of Na+ in the whole plant under high salt 
conditions. Production by PGPR of IAA or unknown 
determinants can increase root length, root surface area and the 
number of root tips, leading to enhanced uptake of nitrate and 
phosphorous (Fig 6). Under high NaCl concen
inoculation of wheat with A. lipoferum reduced some of the 
deleterious effects of NaCl (Bacilio et al., 
with Azospirillium alleviated the stress on wheat plants grown 
under drought conditions (El-Komy et al., 2003).
 

 

Fig. 6 PGPR against drought, salt and fertility stresses
 

Use of PGPR on commercial scale 
 

In the mid1990s in the USA, B. subtilis started to be used as 
seed dressing, with registrations in more than seven crops and 
application to more than 2 million ha (Backman
This was the first major commercial success in the use of an 
antagonist. Commercial development has already been 
accomplished with two products marketed as Kodiak and Epic 
(Gustafson inc.), in which two different 
biocontrol strains were combined with a fungicide (Carboxin
PCNB-metalaxyl) for use against soil borne diseases. The 
application of five commercial chitosan-based formulations of

Table 1. Terms adopted for classified mechanisms by which plant growth promoting bacteria stimulate plant growth
 

Term Definition

Bio fertilizer    A substance which contains 
live microorganisms which, 
when applied on the seed, 
plant surface or the soil, 
colonizes the Rhizosphere or 
the interior of the plant and 
promotes growth through 
increased supply or 
availability of primary 
nutrients for the host  plant
 

Phytostimulator Microorganism with the 
ability to produce or change 
the concentration of growth 
regulators such as indole 
acetic acid, gibberellic acid, 
cytokinins and ethylene
 

Biopesticide or  
biocontrol agent  
 
 
 
 
 

Microorganisms that 
promote plant growth 
through the control of 
phytopathogenic agents, 
mainly for the production of 
antibiotics and antifungal 
metabolites. 
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r drought and salt stresses and. The volatiles 
expression in roots but 

up regulate it in shoot tissues, orchestrating lower Na+ levels 
in the whole plant under high salt 

conditions. Production by PGPR of IAA or unknown 
determinants can increase root length, root surface area and the 
number of root tips, leading to enhanced uptake of nitrate and 
phosphorous (Fig 6). Under high NaCl concentration, 

reduced some of the 
 2004). Inoculation 

alleviated the stress on wheat plants grown 
2003). 

 

against drought, salt and fertility stresses. 

started to be used as 
seed dressing, with registrations in more than seven crops and 
application to more than 2 million ha (Backmann et al., 1994). 
This was the first major commercial success in the use of an 
antagonist. Commercial development has already been 
accomplished with two products marketed as Kodiak and Epic 
(Gustafson inc.), in which two different Bacillus subtilis 

ol strains were combined with a fungicide (Carboxin-
metalaxyl) for use against soil borne diseases. The 

based formulations of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

carefully chosen PGPR developed at Auburn University, USA 
has previously shown demonstrable increase in the growth of 
nursery-raised plants such as cucumber, pepper and tomato 
among others. Seedlings of three 
IP50 and Jyothi raised in rice field soil amended with each of 
the formulations in a 1:40 (formulation: soil) ratio have shown 
significant two-fold increase in root and shoot length, and grain 
yield. The observations do suggest that application of such 
commercial bacterial formulations can serve as microbial 
inoculants for the improvement of rice growth (Vasudevan 
et al., 2002). PGPR are effective as a bio enhancer and 
biofertilizer for banana cultivation. The inoculation also 
increased the N yield and fixed N
roots subsequently increased the yield, improved the physical 
attributes of fruit quality and initiated early flowering. (Baset 
et al., 2010). Inoculation of oilseed (
with PGPR has been reported to increa
palmitic acid, total N and protein content. The PGPR 
inoculation also increased P content through P solubilization 
(Bashan et al., 2000). The effects of plant growth promoting 
rhizobacteria (PGPR) on the rooting and root growth of semi
hardwood and hardwood kiwifruit stem cuttings were 
investigated by Erturk et al., 2010. 
 
The PGPR used were Bacillus RC23, Paenibacillus polymyxa 
RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas 
acidovorans RC41, Bacillus megaterium RC01
simplex RC19. All the bacteria showed indole
(IAA) producing capacity. Of the various rhizospheric bacteria, 
Pseudomonas sp. are aggressive colonizers of the rhizosphere 
of various crop plants (Schroth and Hancock, 1982) and have a 
broad spectrum of antagonistic activity against plant pathogens
(Davison1988). The antibiotic produced by 
fluorescens was found to control damping
seedlings caused by R. solani (Howell 1979).
Pseudomonas species, Pseudomonas aerugin
growth promoting rhizobacterium has been found to be an 
effective biocontrol agent of root pathogens (Izhar 1995, 

Table 1. Terms adopted for classified mechanisms by which plant growth promoting bacteria stimulate plant growth

Definition Mechanism 

bstance which contains 
live microorganisms which, 
when applied on the seed, 
plant surface or the soil, 
colonizes the Rhizosphere or 
the interior of the plant and 
promotes growth through 
increased supply or  
availability of primary 
nutrients for the host  plant 

 
-Biological nitrogen    fixation. 
 
-Utilization of insoluble forms of  
phosphorus  
 

 
Vessey, 2003; Somers 
et al.,
Ramírez and Caballero
Mellado, 2006. 
 

Microorganism with the 
ability to produce or change 
the concentration of growth  
regulators such as indole -
acetic acid, gibberellic acid, 
cytokinins and ethylene 

-Production of phytohormones  
(auxins, cytokinins and gibberellins) 
-Decreased ethylene concentration  
(in the 
interior of the plant) 
 

 
Lugtenberg 
Somers 
 
 

Microorganisms that 
promote plant growth 
through the control of 
phytopathogenic agents, 
mainly for the production of 
antibiotics and antifungal 

 

-production of antibiotics 
(siderophores, HCN, antifungal 
metabolites).  
-Production of enzymes that degrade 
the cellular wall of the fungi. 
-Competitive exclusion.  
-Acquired and Induced systemic 
resistance.  
 

Vessey, 2003; Somers 
et al.,
et al.,
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carefully chosen PGPR developed at Auburn University, USA 
has previously shown demonstrable increase in the growth of 

raised plants such as cucumber, pepper and tomato 
among others. Seedlings of three indica rice cultivars, IR24, 

ised in rice field soil amended with each of 
the formulations in a 1:40 (formulation: soil) ratio have shown 

fold increase in root and shoot length, and grain 
yield. The observations do suggest that application of such 

formulations can serve as microbial 
inoculants for the improvement of rice growth (Vasudevan          

2002). PGPR are effective as a bio enhancer and 
biofertilizer for banana cultivation. The inoculation also 
increased the N yield and fixed N2 in association with banana 
roots subsequently increased the yield, improved the physical 
attributes of fruit quality and initiated early flowering. (Baset  

., 2010). Inoculation of oilseed (Salicornia bigelovii Torr.) 
with PGPR has been reported to increase plant biomass, 
palmitic acid, total N and protein content. The PGPR 
inoculation also increased P content through P solubilization 

2000). The effects of plant growth promoting 
rhizobacteria (PGPR) on the rooting and root growth of semi-

rdwood and hardwood kiwifruit stem cuttings were 
., 2010.  

Bacillus RC23, Paenibacillus polymyxa 
RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas 
acidovorans RC41, Bacillus megaterium RC01 and Bacillus 

All the bacteria showed indole-3-acetic acid 
(IAA) producing capacity. Of the various rhizospheric bacteria, 
Pseudomonas sp. are aggressive colonizers of the rhizosphere 
of various crop plants (Schroth and Hancock, 1982) and have a 

ectrum of antagonistic activity against plant pathogens 
(Davison1988). The antibiotic produced by Pseudomonas 

was found to control damping-off of cotton 
seedlings caused by R. solani (Howell 1979). Among 

Pseudomonas aeruginosa, a plant 
growth promoting rhizobacterium has been found to be an 
effective biocontrol agent of root pathogens (Izhar 1995, 

Table 1. Terms adopted for classified mechanisms by which plant growth promoting bacteria stimulate plant growth 

Reference 

Vessey, 2003; Somers  
., 2004; Fuentes- 

Ramírez and Caballero-
Mellado, 2006.  

Lugtenberg et al., 2002; 
Somers et al., 2004.  

ey, 2003; Somers 
., 2004; Chandler  
., 2008.  

Viveros et al., 2010) 
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Burdman et al., 1996) Septoria tritici (Mycosphaerella 
graminicola) was suppressed by P. aeruginosa strain leci. 
Schonbick et al., 1980 isolated a B. subtilis strain whose 
metabolites are able to induce systemic resistance against 
powdery mildew on Barley. Combined inoculation of A. 
brasilense and the phosphate-solubilizing bacteria 
Pseudomonas strica or Bacillus polymyxa on field grown 
sorghum significantly increased grain and dry matter yields and 
N and P uptake as compared with single inoculation of 
individual organisms (Alagawadi & Gaur, 1992). 
 
Integration and mixtures of PGPR 
 
In nature biocontrol results from mixtures of antagonists, rather 
from high populations of a single antagonist. Consequently, 
application of a mixture of introduced biocontrol agents would 
more closely mimic the natural situation and may broaden the 
spectrum, enhance the efficacy and reliability of biocontrol 
(Duffy and Weller, 1995). Combination of various mechanisms 
of biocontrol is useful in achieving the goal without genetic 
engineering (Janisiewicz, 1996). PGPR strains INR 7 (Bacillus 
pumilus). GBO3 (Bacillus subtilis), and ME1 (Curtobacterium 
flccumfaciens) were tested alone and in combinations for 
biocontrol against Colletotrichum orbiculare (causing 
anthracnose), Pseudomonas syringae pv. Lachrymans (causing 
angular leaf spot), and Erwinia tracheiphila (causing cucurbit 
wilt disease) (Raupach and Kloepper, 1998). Studies on 
combinations of biocontrol agents for plant disease control 
have included mixtures of fungi (Budge et al., 1995; Datnoff    
et al., 1993, 1995; De Boer et al., 1997; Paulitz et al., 1990), 
mixtures of fungi and bacteria (Duffy et al., 1996; Duffy and 
Weller, 1995; Hassan et al., 1997). Combinations of a strain of 
Trichoderma koningii with different Pseudomonas spp. isolates 
provided greater suppression of take-all disease than either the 
fungus or the bacterium alone (Duffy et al., 1996). Similarly, 
chitinase-producing Streptomyces spp. and Bacillus cereus 
isolates used in conjunction with antibiotic-producing                  
P. fluorescens and Burkholderia cepacia isolates had a 
synergistic effect on the suppression of rice sheath blight (Sung 
and Chung, 1997). Positive and negative interactions of 
introduced microorganisms and indigenous microflora can 
influence their performance in the rhizosphere. For example, 
two groups of microorganisms that occupy the same ecological 
niche and have the same nutritional requirements are bound to 
compete for nutrients (Bakker et al., 1988; Fukui et al.,            
1994; Janisiewicz and Bors, 1995). Siderophore-mediated 
competition for iron between the two biocontrol agents P. 
putida WCS358 and P. fluorescens WCS374 decreased 
colonization of radish roots by the latter strain (Raaijmakers           
et al., 1995). 
 
Challenges in Field Application of PGPR 
 
The application of PGPR for control of fungal pathogens in 
greenhouse systems shows considerable promise (Paulitz and 
Belanger 2001) due in part to the consistent environmental 
conditions and high incidence of fungal disease in greenhouses. 
Achieving consistent performance in the field where there is 
heterogeneity of abiotic and biotic factors and competition with 
indigenous organisms is more difficult. Knowledge of these 
factors can aid in determination of optimal concentration, 
timing and placement of inoculants, and of soil and crop 

management strategies to enhance survival and proliferation of 
the inoculants (Bowen and 1999; Gardener and Fravel 2002). 
The concept of engineering or managing the rhizosphere to 
enhance PGPR function by manipulation of the host plant, 
substrates for PGPR, or through agronomic practices, is 
gaining increasing attention (Mansouri et al., 2002). 
Development of better formulations to ensure survival and 
activity in the field and compatibility with chemical and 
biological seed treatments is another area of focus; approaches 
include optimization of growth conditions prior to formulation 
and development of improved carriers and application 
technology (Date, R. A. 2001; Yardin et al., 2000). 
 

Conclusions 
 

With increasing concern about the natural environment and the 
understanding that the era of the large scale use of chemicals in 
the environment needs to come to an end, PGPB offer an 
attractive alternative that contains the possibility of developing 
more sustainable approaches to agriculture. Identification            
of different mechanisms involved in plant-rhizosphere 
microorganism interaction opened new possibilities to design 
strategies for improving crop yields. Along this, biotechnology 
can be applied to further improve strains that have PGPR 
qualities in order to create transgenic strains that combine 
multiple mechanisms of action. Our understanding of plant-
microbe interaction in Rhizosphere must increase before we 
can presume that utilization of PGPR as biofertilizers will 
determine a sustainable promotion of host plants growth. 
Combinations of beneficial bacterial strains that interact 
synergistically are currently being devised and numerous 
recent studies show a promising trend in the field of inoculation 
technology. PGPR are excellent model systems which can 
provide the biotechnologist with novel genetic constituents and 
bioactive chemicals having diverse uses in agriculture and 
environmental sustainability. 
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