CERTIFICATE

IMPACT FACTOR 2021

Subject Area

  • Life Sciences / Biology
  • Architecture / Building Management
  • Asian Studies
  • Business & Management
  • Chemistry
  • Computer Science
  • Economics & Finance
  • Engineering / Acoustics
  • Environmental Science
  • Agricultural Sciences
  • Pharmaceutical Sciences
  • General Sciences
  • Materials Science
  • Mathematics
  • Medicine
  • Nanotechnology & Nanoscience
  • Nonlinear Science
  • Chaos & Dynamical Systems
  • Physics
  • Social Sciences & Humanities

Why Us? >>

  • Open Access
  • Peer Reviewed
  • Rapid Publication
  • Life time hosting
  • Free promotion service
  • Free indexing service
  • More citations
  • Search engine friendly

A comparative study of support vector machines and other machine learning algorithms for crop yield prediction

Author: 
Pooja, Ravi R Saxena, Sravan Kumar, Ritu R Saxena, Shilpi Verma and Roopshikha Agrawal
Subject Area: 
Life Sciences
Abstract: 

The growing population has raised concerns about food security due to limited agricultural resources. Technological advancements in agriculture have improved crop management. Accurately predicting crop yield is vital for ensuring food security and informing agricultural policy decisions. With the increasing availability of large datasets and advancements in machine learning (ML) algorithms, this paper explored the application of ML algorithms for crop yield prediction. This research revealed that a Support Vector Machine (SVM) model outperforms other ML algorithms like LASSO and RNN, achieving a high prediction accuracy of 90% and the lowest RMSE value of 0.15 with an MAE of 0.107. The robust SVM model can handle complex relationships between input features and crop yield. These findings have significant implications for developing accurate crop yield prediction systems, which can inform agricultural decision-making and contribute to sustainable practices.

PDF file: 

ONLINE PAYPAL PAYMENT

IJMCE RECOMMENDATION

Advantages of IJCR

  • Rapid Publishing
  • Professional publishing practices
  • Indexing in leading database
  • High level of citation
  • High Qualitiy reader base
  • High level author suport

Plagiarism Detection

IJCR is following an instant policy on rejection those received papers with plagiarism rate of more than 20%. So, All of authors and contributors must check their papers before submission to making assurance of following our anti-plagiarism policies.

 

EDITORIAL BOARD

Dr. Govindaiah Simuni
USA
Dr. Swamy KRM
India
Dr. Abdul Hannan A.M.S
Saudi Arabia.
Luai Farhan Zghair
Iraq
Hasan Ali Abed Al-Zu’bi
Jordanian
Fredrick OJIJA
Tanzanian
Firuza M. Tursunkhodjaeva
Uzbekistan
Faraz Ahmed Farooqi
Saudi Arabia
Eric Randy Reyes Politud
Philippines
Elsadig Gasoom FadelAlla Elbashir
Sudan
Eapen, Asha Sarah
United State
Dr.Arun Kumar A
India
Dr. Zafar Iqbal
Pakistan
Dr. SHAHERA S.PATEL
India
Dr. Ruchika Khanna
India
Dr. Recep TAS
Turkey
Dr. Rasha Ali Eldeeb
Egypt
Dr. Pralhad Kanhaiyalal Rahangdale
India
DR. PATRICK D. CERNA
Philippines
Dr. Nicolas Padilla- Raygoza
Mexico
Dr. Mustafa Y. G. Younis
Libiya
Dr. Muhammad shoaib Ahmedani
Saudi Arabia
DR. MUHAMMAD ISMAIL MOHMAND
United State
DR. MAHESH SHIVAJI CHAVAN
India
DR. M. ARUNA
India
Dr. Lim Gee Nee
Malaysia
Dr. Jatinder Pal Singh Chawla
India
DR. IRAM BOKHARI
Pakistan
Dr. FARHAT NAZ RAHMAN
Pakistan
Dr. Devendra kumar Gupta
India
Dr. ASHWANI KUMAR DUBEY
India
Dr. Ali Seidi
Iran
Dr. Achmad Choerudin
Indonesia
Dr Ashok Kumar Verma
India
Thi Mong Diep NGUYEN
France
Dr. Muhammad Akram
Pakistan
Dr. Imran Azad
Oman
Dr. Meenakshi Malik
India
Aseel Hadi Hamzah
Iraq
Anam Bhatti
Malaysia
Md. Amir Hossain
Bangladesh
Ahmet İPEKÇİ
Turkey
Mirzadi Gohari
Iran